
Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
Report on Fragoza et al “Extensive disruption of protein interactions by genetic variants across the 
spectrum of allele frequencies in human populations”  
 
This study on variation dependent protein interactions is an excellent piece of work with a quite 
unexpected outcome. Several lab including Yu et al. have demonstrated that changing interaction 
pattern are tightly linked to phenotypes and contrast the idea of null vs wt function of a protein. To 
put simple the functional unit of the cell (which is conceptually most informative) is the interaction 
rather than the protein. Therefore the effect of SNPs on protein interaction is studied, of course 
focusing on assaying disease associated variation. Population variation is often used to provide a 
contrasting picture, a signature of non-functional variation. Fragoza et al. challenge the common 
view and, using similar high quality pipelines that have been used before to assay disease 
variation, start testing the effect of population variation on PPI. On the basis of large scale Y2H 
data the authors test about 2800 amino acid variants in a total of 2800 interactions. The variants 
are sampled from EXAct data using binned allele frequency. Interaction effects are classified as 
null (loss of PPI), disruptive and non-disruptive. Importantly they also address empirically the 
question whether interaction interfaces vs folding through fluorescence screening of 278 ExAC 
variants. The data are analyses computationally comparing the classes with Grantham scores, a 
biochemical measure quantifying the dissimilarity between amino acid residues, Polyphen2 
predicitons, according to interaction surface etc. They also show that disruptive variants show 
positive selection signature when compared to often non-disruptive variants. The analysis suggest 
that results of population variation SNPs are not that different from results obtained with diseasse 
association SNPs.  
The surprising outcome is therefore that a substantial fraction of non-disease associated amino 
acid changes shows an interaction perturbation effect. This includes a fraction of common alleles 
thus implying that the interaction is perturbed in a large number of people. The hypothesis is that 
these (common) alterations will provide a background (“epistatic relationships”) for rendering 
these individuals susceptible to non-highly penetrant disease variation (that e.g. effects 
interactions in the network neighbourhood).  
 
Points for consideration:  
*) The study shows quite some breath with regards to the variants tested. The outcome 
establishes that essentially testing variation in great depth would be very important. The authors 
should therefore contrast/discuss their approach with/in the context of the scanning mutagenesis 
PPI approaches from other labs (i.e. Fields/Shendure, Stelzl, Lehner), which provide required 
depth to study >20 Mio SNVs.  
*) I am slightly confused about the validation and the examples picked. In both cases, PSPH and 
AKR7A2, enzymatic activity of disrupting non-disease mutations are tested, i.e. node function. The 
authors do not properly establish the context of the interaction profile and the activity changes. I 
assume it is sort of trivial in that both proteins function as homo-dimer - and one of the interaction 
losses is the self-interaction. Are this prominent cases? How to reconcile this with the general idea 
of protein interaction perturbation as disease marker etc...  
*) I think the authors could do a slightly better job in presenting the actual perturbation data. X 
number of interactions against y number of alleles can mean many things, also that only a very 
few alleles have an effect on very many interactions. Though there is a graph that tells about the 
allele distribution of the targeted alleles, it remains unclear what the outcome in terms of PPI 
network is. Again, e.g. ... 445 Disruptive SNVs and 4,761 SNV-Interaction Pairs ..., how do the 
distributions look like?  
 
 
 
Reviewer #2:  



Remarks to the Author:  
This is a remarkable study providing evidence for functionality (protein-protein interactions, PPI) of 
missense protein variants at about twice the level previously claimed, and notably including an 
unexpectedly large proportion, around 10%, of common non-synonymous variants in the human 
genome. The study combines high throughput protein mutagenesis and cellular/biochemical assays 
with useful bioinformatics. I do not have any major issues with the manuscript, but suggest one 
further analysis that will address the possible phenotypic consequences of the PPI, and a couple of 
items of clarification.  
While the study is well motivated and generally well described, I would like to see more of a 
description of how the protein partners for the interaction screen were chosen. It appears that the 
choice of 2008 missense variants was somewhat random, ensuring coverage of all frequency 
classes, but then how does this lead to 2181 PPI tests? It is not clear to me from the methods, not 
being a Y2H practitioner, whether it was an all-against-all comparison (namely ~4 million pairwise 
contrasts of mutant against wt of which 2181 involve clear wt-wt PPI) or was some procedure used 
to reduce the search space? Were the tests calibrated against a known databases of interactions? 
In any case, what is the likely impact on the false-positive and false-negative rates of discovery? 
How many of the potential partners of each mutant protein have been screened, and does this 
matter?  
Similarly, with regard the Protein Complementation Assay, please provide some background in the 
text regarding what it is testing. Again, the methods are rather technical and inaccessible for non-
experts.  
The authors have performed an impressive series of analyses designed to evaluate the impacts of 
allele frequency, cancer driver/HGMD, protein structure and stability, and evolutionary 
conservation. The one additional analysis that I would request would be to evaluate whether there 
is a bias for the PPI-disrupting variants to be more likely to be associated with phenotypes by 
GWAS. This has very recently become possible through the publication of the UK Biobank GWAS 
Atlas by Albert Tenesa’s group (http://geneatlas.roslin.ed.ac.uk) Nature Genetics 50, 1093-8, Nov 
2018), which documents associations for 10 million variants with 780 binary and continuous traits. 
I recognize that a thorough analysis including fine-mapping LD adjustment would be a lot of work, 
but an initial scan should definitely be feasible.  
 
 
 
Reviewer #3:  
Remarks to the Author:  
In this manuscript, the authors describe their study on mutations disrupting protein-protein 
interactions (PPIs) among human genome SNVs.  
 
They extracted SNV data from ExAC dataset and performed large scale yeast two-hybrid assays to 
evaluate whether these mutations affect these selected PPIs. Several interesting observations 
were obtained:  
 
(i) PPI disruptive SNVs are prevalent  
(ii) Their fraction is reversely proportional to MAF  
(iii) They are more enriched in disease-associated genes.  
 
 
Although the biological significance and medical inference of disruptive SNVs is important, the 
authors do not provide any serious biological drill downs that would confirm their PPI data - they 
definitely need to address this issue by providing such biological drill downs on one or two selected 
PPI pairs. As a suggestion, the synthetic lethality, either genetically or pharmacologically, may 
help them to validate some of their results.  
 
In consistency with the above, the PSPH T152I SNV needs further exploration. It exhibits the same 
enzymatic characteristics as the disease-associated mutation D32N. Why it does not cause any 



pathological phenotype as D32N mutant should be explained.  
 
The authors provide two examples of functional defects of SNVs. These were demonstrated by in 
vitro enzymatical assays which do not require any PPI in the reactions. It is necessary to 
distinguish the deleterious effects on PPIs and on enzyme activities, which should not be the 
same.  
 
Furthermore, the estimation of many parameters was based on two PPI assays: YTH and PCA. As 
the data provided by the authors and work from many previous studies, the recovery rate is pretty 
low. This might skew the estimation of the true value of disruptive SNV fraction, and should 
definitely be notified. 
 
In addition, the authors mention that a disruption is mild and only partially interferes the involved 
biochemical process. I think it's also possible that the disruption can be compensated by redundant 
parallel pathways.  
 
Moreover, the authors did not describe the whole scenario of the medical inference. They 
suggested that a SNV might contribute liability to certain genetic diseased when combined with 
mutations in other genes involved in the same biochemical process. However, this is a rare 
situation.  
 
I believe the results if this study might have more implications in pharmacogenomics and 
toxicogenomics. For example, the disruptive SNVs may affect the sensitivities to certain drugs and 
environmental cues.  
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Point-by-Point Response Letter 
 

Ref1.1 – “an excellent piece of work with a quite unexpected 
outcome.” – 

Reviewer 
Comment 

This study on variation dependent protein interactions is 
an excellent piece of work with a quite unexpected 
outcome. Several lab including Yu et al. have demonstrated 
that changing interaction pattern are tightly linked to 
phenotypes and contrast the idea of null vs wt function of 
a protein. To put simple the functional unit of the cell 
(which is conceptually most informative) is the 
interaction rather than the protein. Therefore the effect 
of SNPs on protein interaction is studied, of course 
focusing on assaying disease associated variation. 
Population variation is often used to provide a 
contrasting picture, a signature of non-functional 
variation. Fragoza et al. challenge the common view and, 
using similar high quality pipelines that have been used 
before to assay disease variation, start testing the 
effect of population variation on PPI. On the basis of 
large scale Y2H data the authors test about 2800 amino 
acid variants in a total of 2800 interactions. The 
variants are sampled from EXAct data using binned allele 
frequency. Interaction effects are classified as null 
(loss of PPI), disruptive and non-disruptive. Importantly 
they also address empirically the question whether 
interaction interfaces vs folding through fluorescence 
screening of 278 ExAC variants.   

Author 
Response 

We thank the reviewer for their comments. We appreciate that the 
reviewer recognizes the significance of challenging the common 
view that most population variation is non-functional. 

 

Ref1.2 – “a substantial fraction of non-disease associated amino 
acid changes shows an interaction perturbation effect.” – 

Reviewer 
Comment 

The data are analyses computationally comparing the 
classes with Grantham scores, a biochemical measure 
quantifying the dissimilarity between amino acid residues, 
Polyphen2 predicitons, according to interaction surface 
etc. They also show that disruptive variants show positive 
selection signature when compared to often non-disruptive 
variants. The analysis suggest that results of population 
variation SNPs are not that different from results 
obtained with diseasse association SNPs. The surprising 
outcome is therefore that a substantial fraction of non-
disease associated amino acid changes shows an interaction 
perturbation effect. This includes a fraction of common 
alleles thus implying that the interaction is perturbed in 
a large number of people. The hypothesis is that these 
(common) alterations will provide a background (“epistatic 
relationships”) for rendering these individuals 
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susceptible to non-highly penetrant disease variation 
(that e.g. effects interactions in the network 
neighbourhood). 

Author 
Response 

We thank the reviewer for confirming that our finding that a large 
fraction of SNPs disrupt protein interactions is indeed novel. We 
further agree that our results imply that disruptive, common alleles 
would cause corresponding interaction perturbations in a large 
number of people, and that these perturbations provide the genetic 
background for rendering individuals’ susceptibility to many 
disease mutations that are not highly penetrant. 

 

Ref1.3 – Our mutagenesis approach complements and is 
orthogonal to previous mutagenesis studies – 

Reviewer 
Comment 

*) The study shows quite some breath with regards to the 
variants tested. The outcome establishes that essentially 
testing variation in great depth would be very important. 
The authors should therefore contrast/discuss their 
approach with/in the context of the scanning mutagenesis 
PPI approaches from other labs (i.e. Fields/Shendure, 
Stelzl, Lehner), which provide required depth to study >20 
Mio SNVs. 

Author 
Response 

We thank the reviewer for noting that testing variation in great 
depth is very important. Indeed, previous studies have also aimed 
to experimentally measure the impact of coding mutations at large 
scales through contrasting approaches. For example, Fields and 
Shendure developed a massively parallel single-amino-acid 
mutagenesis pipeline named PALS that can generate nearly all 
potential singleton mutations possible for a particular gene of 
interest (Kitzman et al. Nature Methods 2015). This impressive 
depth makes PALS an excellent method for studying extensive 
variation in a single protein; however, PALS is not optimized for 
studying variants of interest across multiple different genes. Our 
mutagenesis approach allowed us to study >2,000 mutations 
across 847 unique genes. In contrast, PALS has only been applied 
to a handful of genes, notably TP53 (Kitzman et al. Nature Methods 
2015) and BRCA1 (Findlay et al. Nature 2018).  
 
Regardless of whether extensive mutations are generated for a 
single gene or across a diverse set of genes, the impact of a 
mutation must be characterized through functional assays. Y2H is 
widely used for characterizing the impact of mutations on protein-
protein interactions (Wei et al. PLOS Genet 2014; Sahni et al. Cell 
2015), but several derivatives for detecting perturbations by Y2H 
exist. For example, Stelzl and colleagues developed the Int-Seq 
platform for probing protein-protein interaction disruptions using a 
Reverse Two-Hybrid (R2H) approach (Woodsmith et al. Nature 
Methods 2017). Specifically, a two reporter system is used such 
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that positive yeast growth occurs when an interaction is perturbed. 
While this R2H approach increases assay sensitivity for disruptive 
variants, a R2H reference interactome of known wild-type 
interacting protein pairs does not exist yet. Therefore interacting 
wild-type protein interaction pairs must be screened first before 
corresponding disruptive variants can be subsequently identified, 
which can limit the throughput of this method. Indeed, Stelzl and 
colleagues limited their screen to disruptive mutations on eight 
proteins across nine total interactions (Woodsmith et al. Nature 
Methods 2017). In contrast, a reference interactome of >14,000 
interaction pairs specific to our form of Y2H was already available 
which allowed us directly screen the impact of our >2,000 SNVs 
across 2,185 unique protein-protein interactions. 
 
Mutagenesis pipelines can be combined with numerous different 
functional assays beyond protein interactions. For example, 
Lehner and colleagues used the deep mutational scanning pipeline 
developed by Fowler and Fields (Fowler and Fields. Nature 
Methods 2014) to examine the impact of mutations on alternative 
splicing of the FAS/CD95 exon 6, which is involved in the control 
of cellular apoptosis (Julien et al. Nat Commun 2016). Notably, in 
addition to examining nearly all single mutations in the 63-
nucleotides-long FAS/CD95 exon 6, Lehner and colleagues also 
examined how mutation pairs impact splicing of this exon. 
Examining pairs of mutations allowed the authors to dissect how 
epistatic relationships between variants impact alternative splicing, 
a unique strength to their study; however, this epistatic 
examination was limited to a single exon, as opposed to examining 
mutational effects across a diverse breadth of genes as performed 
in our study.  
 
We have updated the discussion section of our manuscript with 
this comparative methods analysis discussed here. 

Excerpt from 
Revised Manuscript 

[Page 12] 
Several methods to experimentally measure the impact of coding mutations at large scales have 
been recently reported20,74-76. The depth of proteins, variants, and interactions presented here 
complements these previous methods well. For example, Fields and Shendure developed a 
massively parallel single-amino-acid mutagenesis pipeline, named PALS, that can generate nearly 
all potential singleton mutations possible for a particular gene of interest74. This impressive depth 
makes PALS an excellent method for studying extensive variation in a single protein, most notably 
TP5374 and BRCA177 but remains to be optimized for studying variation across a large set of 
unique genes. In contrast, our mutagenesis approach allowed us to survey >2,000 mutations across 
847 unique genes. Similarly, while Y2H is widely used for characterizing the impact of mutations 
on protein-protein interactions19,20, several derivatives for detecting perturbations by Y2H exist. 
For instance, Stelzl and colleagues developed the Int-Seq platform for probing protein-protein 
interaction disruptions using a Reverse Two-Hybrid (R2H) approach76. While this R2H approach 
increases assay sensitivity, a R2H reference interactome is not yet available, limiting the coverage 
of this approach to a handful of interactions. 
 
[Page 13] 
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For example, Lehner and colleagues a deep mutational scanning pipeline78 to measure the impact 
of mutations on alternative splicing79. Continued efforts to survey all potential manners in which 
molecular-level perturbations can alter cellular and organismal phenotypes are needed to properly 
understand the impact of mutations on human health. 

 

Ref1.4 – Better establishing the context of protein interaction 
perturbations as disease markers – 

Reviewer 
Comment 

*) I am slightly confused about the validation and the 
examples picked. In both cases, PSPH and AKR7A2, enzymatic 
activity of disrupting non-disease mutations are tested, 
i.e. node function. The authors do not properly establish 
the context of the interaction profile and the activity 
changes. I assume it is sort of trivial in that both 
proteins function as homo-dimer - and one of the interaction 
losses is the self-interaction. Are this prominent cases? 
How to reconcile this with the general idea of protein 
interaction perturbation as disease marker etc... 

Author 
Response 

We appreciate the opportunity to better clarify how the interaction 
profiles for our enzymatic examples relate to changes in protein 
activity. We also use this opportunity to (1) introduce an example 
of two disease mutations on SMAD4 with matching disruption 
profiles that result in the same disease and a third non-disruptive 
SMAD4 mutation that results in a clinically distinct disease; (2) 
clarify how a disruption to PSPH and AKR7A2 dimerization can 
also impact enzymatic activity and comment on how prominent 
these cases may be; and (3) introduce an additional functional 
study in which we generated CRISPR-edited mice homozygous for 
a disruptive rare variant in SEPT12 and showed that this mutation 
resulted in male subfertility. 
 
We first observed that pairs of disease-associated mutations on 
the same gene that disrupt the same set of interactions result in 
the same disease significantly more often than mutation pairs with 
differing interaction perturbation profiles (Fig. 4e). To complement 
this observation, we have highlighted three disease-associated 
mutations on the protein SMAD4 (Fig. 4f), a crucial protein in the 
TGFβ/SMAD signaling pathway. Two mutations on SMAD4, 
E330K and G352R, result in juvenile polyposis (Gallione et al. Am 
J Med Genet 2010; Sayed et al. Ann Surg Oncol 2002) while a 
third mutation, N13S, results in a clinically distinct disease, 
pulmonary arterial hypertension (Nasim et al. Hum Mut 2011). We 
observed that E330K and G352R cluster together in three 
dimensional space near the SMAD4-SMAD3 interaction interface 
(Fig. 4g). N13S, in contrast, is positioned away from E330K and 
G352R near the N-terminus of SMAD4. In agreement with the 
proximal clustering of E330K and G352R near the SMAD4-SMAD3 
interaction interface, both mutations disrupted the SMAD4 
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interaction with SMAD3 in addition to disrupting the SMAD4-
SMAD9 interaction (Fig. 4f). These SMAD protein disruption 
results agree with previous evidence implicating the TGFβ/SMAD 
signaling pathway in the formation of juvenile polyposis (Jung et al. 
Gastroent 2017; Massangue. Cell 2008). In contrast, the N13S 
mutation left SMAD4 interactions with SMAD3 and SMAD9 intact, 
which agrees with a previous study that found no evidence that 
N13S alters SMAD-mediated signaling (Nasim et al. Hum Mut 
2011). Collectively, this result demonstrates how mutations with 
the same disruption profiles can lead to the same disease 
phenotype. With this result as a template, we then proceeded to 
explore cases in which both a SNV and a known disease-
associated mutation shared the same disruption profile with the 
goal of determining whether the disruptive SNV also resulted in the 
same disease phenotype. 
 
In our disruption assays, we observed that a PSPH disease-
associated mutation, D32N, as well as a rare variant, T152I, both 
disrupted interactions with itself while leaving all other PSPH 
interactions intact (Fig. 5a). Previous research has reported the 
importance of PSPH dimerization, noting that PSPH is a dimer in 
solution and that “mutant residues such as Y138K, F139K, and 
Y143K, which could interfere with dimer interfaces, exist in an 
aggregated and insoluble form” (Kim H-Y et al. JBC 2002). Since 
the T152I rare variant disrupts an interaction with itself, we 
hypothesized that T152I would also reduce enzymatic activity. 
Indeed, in vitro measurements of PSPH enzymatic activity showed 
that the T152I mutant protein reduced activity to the same extent 
as D32N while a non-disruptive mutation, T149M, left enzymatic 
activity intact (Fig. 5b). Lastly, we note that dimerization may also 
be crucial for AKR7A2 enzymatic activity since the mutation A142T 
both disrupts an interaction with itself (Fig. 3f) and reduces 
AKR7A2 enzymatic activity (Fig. 3g). 
 
While a shared PSPH self-disruption between the rare variant 
T152I and D32N allowed us to prioritize T152I as a candidate 
disease-associated mutation, only 61 out of 669 (9.1%) total 
disrupted interactions in our dataset involved protein homodimers. 
In an effort to show that shared disruption profiles can be applied 
to other categories of interaction perturbations, we also 
characterized disruptive mutations on the GTPase, SEPT12.  
 
SEPT12 is known to interact with other septin proteins found in the 
SEPT2, SEPT6, and SEPT7 protein subgroups, to form a 
filamentous structure at the sperm annulus (Mostowy and Cossart 
Nat Rev Mol Cell Biol 2012; Sellin et al. Mol Biol Cell 2014; Kuo et 
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al. J Cell Sci 2015). Mutation-induced perturbations to SEPT12 
interactions with these septin subgroup proteins can compromise 
the structural integrity of the sperm annulus to result in male 
infertility. Indeed, an infertility-causing mutation in men, 
SEPT12_D197N, was previously shown to disrupt interactions with 
septin proteins found at the sperm annulus, resulting in a 
disorganized sperm annulus and poor sperm motility in a mouse 
model for SEPT12_D197N (Kuo et al. J Cell Sci 2015). 
 
We identified a rare variant in SEPT12, G169E (MAF = 0.02%), 
that disrupted interactions with SEPT7 as well as the SEPT2 
subgroup proteins, SEPT1 and SEPT5 (Fig. 5c). The infertility-
causing mutation, D197N, disrupted these exact same septin 
interaction partners by Y2H. Using homology modeling, we 
observed that both G169E and D197N mutations occur at SEPT12 
interaction interface residues with SEPT1 (Fig. 5d) and confirmed 
that both mutations disrupt the SEPT12-SEPT1 interaction without 
reducing protein stability in 293T cells (Fig. 5e). These results 
demonstrate that these mutations function by specifically 
perturbing SEPT12 protein-protein interactions as opposed to 
disrupting SEPT12 stability as a whole. 
 
To investigate whether these matching SEPT12 molecular 
phenotypes result in corresponding organismal phenotypes, we 
generated Sept12G169E mice using a CRISPR-editing approach. 
We found that homozygous Sept12G169E males were subfertile in 
comparison to wild-type males (Fig. 5f). Notably, sperm from 
homozygous Sept12G169E males exhibited poor motility (Fig. 5g), a 
phenotype also reported for Sept12D197N male mice (Kuo et al. J 
Cell Sci 2015).  
 
Taken in context with our in vitro disruption data, our mouse model 
strongly suggests that SEPT12_G169E is an infertility-associated 
mutation in men and further demonstrates how shared disruption 
profiles can be used to prioritize candidate disease-associated 
mutations. Lastly, we note that no individuals homozygous for 
SEPT12_G169E are reported in ExAC, potentially explaining why 
SEPT12_G169E has not been previously reported as an infertility-
associated variant. 
 
The manuscript has been updated to include our SMAD4 
disruption profile examples, better establish the context of our 
PSPH and AKR7A2 disruption profiles, and to include our SEPT12 
subfertility example. 

Excerpt from 
Revised Manuscript 

[Page 7] 
Since AKR7A2 is a dimer in solution and A142T disrupts an AKR7A2 interaction with itself, we 
hypothesized that this mutation might also impact AKR7A2 enzymatic activity. As such, we 
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purified recombinant wild-type and mutant AKR7A2 protein to test for changes in NADPH-
dependent turnover of SSA (Methods). 
 
[Page 9] 
To demonstrate how pairs of disease-associated mutations on the same gene with matching 
disruption profiles can result in the same disease, we highlight three disease-associated mutations 
on SMAD4 (Fig. 4f), a crucial protein in the TGFβ/SMAD signaling pathway. Two mutations on 
SMAD4, E330K and G352R, are associated with juvenile polyposis54,55 while a third mutation, 
N13S, results in a clinically distinct disease, pulmonary arterial hypertension56. We observed that 
E330K and G352R cluster together in three dimensional space near the SMAD4-SMAD3 
interaction interface (Fig. 4g). N13S, in contrast, appears positioned away from E330K and 
G352R near the N-terminus of SMAD4. In agreement with the proximal clustering of E330K and 
G352R near the SMAD4-SMAD3 interaction interface, both mutations disrupted the SMAD4 
interaction with SMAD3 in addition to disrupting the SMAD4-SMAD9 interaction (Fig. 4f). 
These SMAD protein disruption results agree with previous evidence implicating the 
TGFβ/SMAD signaling pathway in the formation of juvenile polyposis57,58. In contrast, the N13S 
mutation left SMAD4 interactions with SMAD3 and SMAD9 intact, which agrees with a previous 
study that found no evidence that N13S alters SMAD-mediated signaling56.  

With this example as a template, we then explored cases in which both an ExAC variant and 
a known disease-associated mutation shared the same disruption profile with the goal of 
determining whether the population variant exhibited evidence of the same disease phenotype. To 
do this, we tested two mutations with matching disruption profiles on the protein PSPH (Fig. 5a):  
(i) T152I, a rare variant (MAF = 0.10%) in ExAC that disrupts an interaction with itself and (ii) 
D32N, which also disrupts an interaction with itself and causes phosphoserine phosphatase 
deficiency in a compound heterozygous individual with two deleterious PSPH mutations59. An 
additional PSPH non-disruptive rare variant, T149M, was included as a control. Since PSPH exists 
as a dimer in solution and can aggregate when mutations that interfere with dimerization are 
introduced60, we reasoned that mutations that disrupt this dimerization may also reduce PSPH 
enzymatic activity. We therefore purified recombinant wild-type, D32N, T152I, and T149M 
PSPH proteins and measured for changes in phosphatase activity for PSPH mutants relative to 
wild-type using a malachite green assay. 
 
[Page 10] 
To further show how potentially physiologically-relevant mutations can be identified using shared 
disruption profiles, we also characterized a pair of disruptive mutations on the GTPase, SEPT12: 
a rare variant not known to associate with any disease phenotypes, G169E (MAF = 0.02%), and 
D197N, an infertility-causing mutation in men61. Both mutations perturbed interactions with 
SEPT7 and SEPT2 subgroup proteins, SEPT1 and SEPT5 (Fig. 5c). These perturbations are 
particularly relevant because SEPT12 is known to interact with other septin proteins found in the 
SEPT2, SEPT6, and SEPT7 protein subgroups to form a filamentous structure at the sperm 
annulus62-64. Moreover, the infertility-causing mutation SEPT12_D197N, which was previously 
shown to perturb interactions with these same septin subgroup proteins, resulted in a disorganized 
sperm annulus and poor sperm motility in a mouse model for D197N64. Lastly, using homology 
modeling, we observed that both G169E and D197N mutations occur at SEPT12 interaction 
interface residues with SEPT1 (Fig. 5d) and confirmed that both mutations disrupt the SEPT12-
SEPT1 interaction without reducing protein stability in 293T cells (Fig. 5e). These results 
demonstrate that these mutations function by specifically perturbing SEPT12 protein-protein 
interactions as opposed to disrupting SEPT12 stability as a whole. 

We then investigated whether these matching SEPT12 molecular phenotypes result in 
corresponding organismal phenotypes by generating Sept12G169E mice using a CRISPR-editing 
approach65. We found that homozygous Sept12G169E males were subfertile in comparison to wild-
type males (Fig. 5f). Notably, sperm from homozygous Sept12G169E males exhibited poor motility 
(Fig. 5g), a phenotype also reported for Sept12D197N male mice64. These observations of poor 
sperm motility and subfertility in mice suggest that SEPT12_G169E may deleteriously impact 
fertility in men homozygous for this mutation, although we note that no individuals homozygous 
for SEPT12_G169E are reported in ExAC. Taken together with our in vitro data, these results also 
demonstrate how shared disruption profiles can be used to prioritize candidate disease-associated 
mutations. 

 



8 
 

Ref1.5 – Clearer presentation of SNV perturbation data – 
Reviewer 
Comment 

*) I think the authors could do a slightly better job in 
presenting the actual perturbation data. X number of 
interactions against y number of alleles can mean many 
things, also that only a very few alleles have an effect on 
very many interactions. Though there is a graph that tells 
about the allele distribution of the targeted alleles, it 
remains unclear what the outcome in terms of PPI network 
is. Again, e.g. ... 445 Disruptive SNVs and 4,761 SNV-
Interaction Pairs ..., how do the distributions look like? 

Author 
Response 

In an effort to present our perturbation data more transparently, we 
first plotted a pie chart categorizing the number of variants that 
disrupt either 1, 2, 3, 4, or 5 or more interactions (Supplementary 
Fig. 1c). We observed that 205 of our tested SNVs disrupt only a 
single interaction (68.8%), suggesting that disruptive mutations 
perturb specific subsets of protein function as opposed to 
perturbing protein function as a whole.  
 
Our pie chart also revealed that many of the SNVs that we tested 
disrupted five or more interactions (6.7%). To further explore the 
extent to which highly disruptive SNVs specifically contribute to the 
total number of disrupted interactions reported in our data, we 
constructed a cumulative distribution function (CDF) plotting the 
fraction of disruptive SNVs against the proportion of total disrupted 
interactions (Supplementary Fig. 1d). Notably, we found that four 
outlier SNVs contributed to 26.6% of the total disrupted 
interactions reported in our study, a moderate impact. We note, 
however, that the analyses in our study are largely calculated from 
the fraction of disruptive variants (i.e. variants that disrupt ≥1 
interaction are scored as disruptive) as opposed to the fraction of 
disrupted interactions, and therefore any skew resulting from this 
handful of highly disruptive variants does not affect our 
conclusions.  
 
Nonetheless, we re-examined the only per-interaction analysis in 
our manuscript that includes interactions from these outliers: our 
PCA retest of disrupted and non-disrupted SNV-interactions (Fig. 
2a). Repeating this PCA retest calculation with any interactions 
corresponding to these four outlier SNVs removed showed no 
changes in our results (Supplementary Fig. 1b).  
 
The manuscript has been updated to include the analyses and 
discussion presented here. 

Excerpt from 
Revised Manuscript 

[Page 4] 
We further validated the quality of our SNV-interaction network by performing Protein 
Complementation Assay (PCA)40 in human 293T cells to retest a representative subset of ~400 
disrupted and non-disrupted SNV-interactions pairs amongst our ExAC subset. SNV-disrupted 
interactions retested at a rate approximate to a negative reference set comprising randomly 
selected ORF pairs whereas non-disrupted interactions retested at a rate statistically 
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indistinguishable from a positive reference set of literature-established protein interactions41,42 
(Fig. 2a, Supplementary Fig. 1a). Our result remained unchanged when we removed interactions 
corresponding to highly-disruptive SNVs (Supplementary Fig. 1b). 
 
[Page 5] 
The extent to which a mutation is disruptive can also be categorized by measuring the fraction of 
corresponding protein interactions disrupted by a particular variant. Accordingly, we first grouped 
each of our 298 disruptive variants by the number of interactions they perturb (Supplementary 
Fig. 1c). We observed that 205 of our tested SNVs disrupted only a single interaction (68.8%) 
while a small fraction of variants (6.7%) disrupted five or more interactions, suggesting that 
disruptive mutations tend to perturb specific subsets of protein function as opposed to perturbing 
protein function as a whole. Examining the distribution of disruptive variants across the number 
of interactions perturbed revealed a similar trend (Supplementary Fig. 1d). 

 

Ref2.1 – “a remarkable study providing evidence for 
functionality of missense protein variants.” – 

Reviewer 
Comment 

This is a remarkable study providing evidence for 
functionality (protein-protein interactions, PPI) of 
missense protein variants at about twice the level 
previously claimed, and notably including an unexpectedly 
large proportion, around 10%, of common non-synonymous 
variants in the human genome. The study combines high 
throughput protein mutagenesis and cellular/biochemical 
assays with useful bioinformatics. I do not have any major 
issues with the manuscript, but suggest one further 
analysis that will address the possible phenotypic 
consequences of the PPI, and a couple of items of 
clarification. 

Author 
Response 

We thank the reviewer for confirming the validity and importance 
of our study. 

 

Ref2.2 – Unbiased protein interaction perturbation screens – 
Reviewer 
Comment 

While the study is well motivated and generally well 
described, I would like to see more of a description of 
how the protein partners for the interaction screen were 
chosen. It appears that the choice of 2008 missense 
variants was somewhat random, ensuring coverage of all 
frequency classes, but then how does this lead to 2181 PPI 
tests? It is not clear to me from the methods, not being a 
Y2H practitioner, whether it was an all-against-all 
comparison (namely ~4 million pairwise contrasts of mutant 
against wt of which 2181 involve clear wt-wt PPI) or was 
some procedure used to reduce the search space? Were the 
tests calibrated against a known databases of 
interactions? In any case, what is the likely impact on 
the false-positive and false-negative rates of discovery? 
How many of the potential partners of each mutant protein 
have been screened, and does this matter? 

Author 
Response 

To select interaction partners for each mutant protein tested in our 
SNV-perturbation screen, we first leveraged a Y2H reference 
interactome comprised of over 14,000 known wild-type protein-
protein interactions reported in four manuscripts (Rual et al. Nature 
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2005, Venkatesan et al. Nature Methods 2009, Yu et al. Nature 
Methods 2011, Rolland et al. Cell 2014). Because these are 
published interactions that are retestable by our version of Y2H, 
we did not perform an all-by-all interaction screen which would 
require testing all potential interaction partners for a particular 
protein (in other words, we did not perform ~4 million pairwise 
tests); rather, we only retested interactions already reported in this 
reference interactome. Only interactions from this wild-type 
reference interactome that retest positive in our lab are considered 
in our analyses. This requirement for retestable wild-type 
interactions found in the literature-reported reference interactome 
dramatically reduces the search space in which we probe for 
disruptive SNVs. 
 
On average, each protein in the reference interactome has 
between 2-3 interaction partners. We note that we tested 847 
unique genes against 2,185 corresponding interaction partners 
(~2.5 interaction partners per gene-encoded protein). For each 
wild-type protein-protein interaction, we then tested whether 
corresponding SNVs for each interaction can perturb that 
interaction. This consisted of 2,009 SNVs found on 847 unique 
genes. Since each of these proteins has ~2.5 interaction partners, 
this resulted in a total of 4,797 SNV-interaction pairs tested, as 
diagrammed in Fig. 1c. 
 
False positive and false negatives must be carefully considered in 
any high-throughput assay. First of all, our version of Y2H has 
been applied to screen hundreds of millions of protein pairs in five 
different organisms (Walhout et al. Science 2000; Boulton et al. 
Science 2002; Rual et al. Nature 2005; Yu et al. Science 2008; 
Arabidopsis Interactome Mapping Consortium. Science 2011; 
Rolland et al. Cell 2014; Vo et al. Cell 2016) and has been 
consistently shown to be of high quality, as confirmed by other 
groups (Lim et al. Cell 2006; Tonikian et al. PLOS Biol 2009; 
Bandyopadhyay et al. Nature Methods 2010; Kahle et al. Hum Mol 
Genet 2011; Soler-Lopez et al. Genome Research 2011). The 
false positive rate has also been consistently shown to be minimal 
(measured as <1% in human, Braun et al. Nature Methods 2009). 
Thus, the high quality Y2H datasets on human protein-protein 
interactions provide an excellent starting point for our study.  
 
As with any assay, Y2H does have false negatives (i.e., true 
interactions not detected by Y2H). However, these false negatives 
have no bearing on the disruptions we detect, because we test the 
effect of mutations only on those wild-type interactions that can be 
detected by our Y2H assay. Thus, the number of disruptions that 
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we detect and the corresponding fraction of disruptive SNVs 
presented in the manuscript are lower bound estimates of the 
actual number of disruptive SNVs. If we could detect additional 
interactions (i.e., have an assay with a lower false negative rate), 
the extent of disruptions detected would only be higher, further 
highlighting the significance of our findings. 
 
Specific for our study, we took systematic steps to ensure the 
highest possible data quality. First, as stated earlier, we only 
examined previously reported interactions found in the reference 
interactome. Second, we required that all reported SNV-disrupted 
interactions reproduce themselves across three independent 
screens. Furthermore, the corresponding wild-type interaction is 
retested in each of these three screens to ensure that the change 
in Y2H growth phenotype between wild-type and mutant is 
consistent. While our requirement for mutant interaction pairs to 
reproduce across three screens minimizes false positives (i.e. a 
false disruption is very unlikely to reproduce three separate times), 
this stringency could potentially increase the occurrences of false 
negatives (i.e. a true disruptive variant may fail to retest across one 
of three screens). In designing our experiments, we expected that 
a majority of population variants would be non-disruptive, so we 
designed our assays to maximize our confidence in the SNVs that 
we call disruptive, which required a more conservative scoring 
approach as a result. 
 
We have amended our methods section with additional information 
regarding how interaction partners were selected for testing. 

Excerpt from 
Revised Manuscript 

[Supplementary Note 1] 
To select interaction partners for each mutant protein tested in our SNV-perturbation screen, we 
first leveraged a Y2H reference interactome comprised of over 14,000 known wild-type protein-
protein interactions reported in four manuscripts1-4. Since these published interactions are 
retestable by our version of Y2H, we retested only interactions corresponding to our SNVs of 
interest that were already reported from this reference interactome. Only interactions from this 
wild-type reference interactome that retested positive in our lab are considered in our analyses. 
This requirement for retestable wild-type interactions found in the literature-reported reference 
interactome dramatically reduces the search space in which we probe for disruptive SNVs and 
prevented the need for an all-by-all Y2H interaction screen. 

On average, each protein in the reference interactome has between 2-3 interaction partners. 
We note that we tested 847 unique genes against 2,185 corresponding interaction partners (~2.5 
interaction partners per gene-encoded protein). For each wild-type protein-protein interaction, we 
then tested whether corresponding SNVs for each interaction can perturb that interaction. This 
consisted of 2,009 SNVs found on 847 unique genes. Since each of these genes has ~2.5 
interaction partners, this results in a total of 4,797 SNV-interaction pairs tested (Fig, 1c). 

 

Ref2.3 – Background information for Protein Complementation 
Assay – 

Reviewer 
Comment 

Similarly, with regard the Protein Complementation Assay, 
please provide some background in the text regarding what 
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it is testing. Again, the methods are rather technical and 
inaccessible for non-experts. 

Author 
Response 

We thank the reviewer for their suggestion. Protein 
Complementation Assay (PCA) is a protein-protein interaction 
assay performed in HEK 293T cells in which a bait and prey protein 
are fused to two complementary fragments of a fluorescent protein, 
YFP. If the bait and prey protein successfully interact, the two YFP 
fragments will stably bind and fluoresce as a result. PCA is a 
particularly valuable assay in protein-protein interaction screens 
because it is high-throughput, and it provides an independent 
assay for validating the quality of protein-protein interactions 
detected through Y2H screens. For this reason, PCA is commonly 
used in many interactome screens, including in Arabidopsis 
(Arabidopsis Interactome Mapping Consortium. Science 2011), 
yeast (Yu et al. Science 2008; Vo et al. Cell 2016), and human 
(Rolland et al. Cell 2014). Notably, PCA can also be used to 
validate that two proteins do not interact, which is important when 
testing the impact of disruptive variants. To do this, we measure 
the loss of fluorescence signal in PCA for mutant interaction pairs 
relative to wild-type pairs to validate that Y2H-tested mutations are 
indeed disruptive (Sahni et al. Cell 2015; Yi et al. Nat Protoc 2017).
 
We have updated our manuscript to provide more background on 
how PCA functions and how it is used to validate disrupted 
interactions. 

Excerpt from 
Revised Manuscript 

[Supplementary Note 5] 
Protein Complementation Assay (PCA) is a protein-protein interaction assay performed in HEK 
293T cells in which a bait and prey protein are fused to two complementary fragments of a 
fluorescent protein, YFP. If the bait and prey protein successfully interact, the two YFP fragments 
will stably bind and fluoresce as a result. PCA is a particularly valuable assay in protein-protein 
interaction screens because it is high-throughput, and it provides an independent assay for 
validating the quality of protein-protein interactions detected through Y2H screens. For this 
reason, PCA is commonly used in many interactome screens, including in Arabidopsis7, yeast3,8, 
and human4,14. Importantly, PCA can also be used to validate that two proteins do not interact, 
which is insightful when testing the impact of disruptive variants. To do this, loss of fluorescence 
signal in PCA for mutant interaction pairs relative to wild-type pairs is measured to validate that 
Y2H-tested mutations are indeed disruptive15,16.

 

Ref2.4 – PPI-disrupting variants are not biased towards GWAS 
phenotypes – 

Reviewer 
Comment 

The authors have performed an impressive series of analyses 
designed to evaluate the impacts of allele frequency, cancer 
driver/HGMD, protein structure and stability, and 
evolutionary conservation. The one additional analysis that 
I would request would be to evaluate whether there is a 
bias for the PPI-disrupting variants to be more likely to 
be associated with phenotypes by GWAS. This has very 
recently become possible through the publication of the UK 
Biobank GWAS Atlas by Albert Tenesa’s group 
(http://geneatlas.roslin.ed.ac.uk) Nature Genetics 50, 
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1093-8, Nov 2018), which documents associations for 10 
million variants with 780 binary and continuous traits. I 
recognize that a thorough analysis including fine-mapping 
LD adjustment would be a lot of work, but an initial scan 
should definitely be feasible. 

Author 
Response 

We thank the reviewer for their excellent suggestion. To examine 
whether disruptive variants are more likely to be associated with 
GWAS phenotypes, we first parsed all GWAS SNPs found in the 
UK Biobank GWAS Atlas. We then calculated R2 values between 
all ExAC variants in our dataset and the UK Biobank SNPs, using 
1000 Genomes Phase 3 data 
 
ExAC variants in strong LD with GWAS SNPs had a disruption rate 
that was not significantly different from the overall disruption rate 
for ExAC variants as a whole (Supplementary Fig. 5a). Our 
results were robust to how strongly LD was defined (i.e., across 
multiple R2 thresholds), and consistent regardless of if African or 
European alleles were used to calculate LD (Supplementary Fig. 
5a, Supplementary Fig. 5c). Since most GWAS SNPs occur at 
MAF ≥ 0.1% and a sizable fraction of our tested variants are rare, 
we also repeated our analysis restricted for variants at MAF ≥ 0.1% 
but still found no significant trend (Supplementary Fig. 5b, 
Supplementary Fig. 5d). As a control, we also repeated these 
same analyses using SNPs from the NCBI GWAS Catalog and 
found the exact same trends as those for the UK Biobank GWAS 
Atlas (Supplementary Fig. 5e-h). 
 
Our analysis reveals that irrespective of whether a variant is in 
strong LD with a GWAS SNP or not, the likelihood that the variant 
is disruptive is unchanged. This potentially suggests that our 
pipeline is well suited for detecting phenotypic variant that may 
otherwise go undetected by GWAS; however, we emphasize that 
our analysis represents only a preliminary scan of the GWAS data 
available. A more thorough, rigorous analysis is required to 
properly dissect potential relationships between molecularly 
disruptive variants and GWAS SNPs. 
 
We have commented on the potential relationship between 
disruptive variants and GWAS SNPs in our discussion section. 

Excerpt from 
Revised Manuscript 

[Page 13] 
While our experimental framework was not designed to find potentially causal variants driving 
GWAS phenotypes (Supplementary Fig. 5; Methods), experimental frameworks that can tease 
apart functional variants from those that are non-functional will be key to identifying causal 
variants in common disease. 
 
[Methods] 
To examine whether ExAC variants that are in strong linkage disequilibrium (LD) with GWAS 
SNPs are more likely to be disruptive, we first extracted all SNPs associated with phenotypes in 
the UK Biobank GWAS Atlas88. We then calculated R2 values between all ExAC variants in our 
dataset and the UK Biobank GWAS SNPs, using 1000 Genomes Phase 3 data89. 
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ExAC variants in strong LD with GWAS SNPs had a disruption rate that was not 
significantly different from the overall disruption rate (Supplementary Fig. 5a). Results were 
robust across multiple R2 thresholds using either African or European allele frequencies 
(Supplementary Fig. 5a, Supplementary Fig. 5c). Since most GWAS SNPs occur at MAF ≥ 
0.1% and a sizable fraction of our tested variants are rare, we also repeated our analysis restricted 
for variants at MAF ≥ 0.1% but still found no significant trend (Supplementary Fig. 5b, 
Supplementary Fig. 5d). As a control, we also repeated these same analyses using SNPs from 
the NCBI GWAS Catalog90 and found the exact same trends as those for the UK Biobank GWAS 
Atlas (Supplementary Fig. 5e-h).

 

Ref3.1 – "Several interesting observations were obtained” – 
Reviewer 
Comment 

In this manuscript, the authors describe their study on 
mutations disrupting protein-protein interactions (PPIs) 
among human genome SNVs. They extracted SNV data from ExAC 
dataset and performed large scale yeast two-hybrid assays 
to evaluate whether these mutations affect these selected 
PPIs. Several interesting observations were obtained: 
 
(i) PPI disruptive SNVs are prevalent 
(ii) Their fraction is reversely proportional to MAF 
(iii) They are more enriched in disease-associated genes.  

Author 
Response 

We thank the reviewer for their summary and their subsequent 
comments. 

 

Ref3.2 – Biological drill-down of PPI disruption data – 
Reviewer 
Comment 

Although the biological significance and medical inference 
of disruptive SNVs is important, the authors do not 
provide any serious biological drill downs that would 
confirm their PPI data - they definitely need to address 
this issue by providing such biological drill downs on one 
or two selected PPI pairs. As a suggestion, the synthetic 
lethality, either genetically or pharmacologically, may 
help them to validate some of their results. 

Author 
Response 

We agree with the reviewer that the biological significance and 
medical inference of disruptive SNVs is important. We therefore 
introduce an example of two disease mutations on SMAD4 with 
matching disruption profiles that result in the same disease and a 
third non-disruptive SMAD4 mutation that results in a clinically 
distinct disease. We also present a physiologically-relevant case 
study in which we characterized a disruptive SNV in SEPT12 and 
further generated CRISPR-edited mice to validate the functional 
impact of the SNV in vivo. We begin, however, by first providing 
several lines of evidence to demonstrate that both the interactions 
and their corresponding disruptions reported in our manuscript are 
biologically meaningful. 
 
The ability of the yeast-two hybrid assay to detect biologically 
meaningful interactions across organisms has been extensively 
demonstrated across multiple studies (Walhout et al. Science 
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2000; Boulton et al. Science 2002; Rual et al. Nature 2005; Yu et 
al. Science 2008; Arabidopsis Interactome Mapping Consortium. 
Science 2011; Rolland et al. Cell 2014; Vo et al. Cell 2016). To 
further confirm the biological significance of the interactions used 
in this study, we examined the co-expression of protein abundance 
levels corresponding to interactions used in our study. Using 
protein expression levels for 30 adult and fetal tissues and cell 
types from the Human Proteome Map (Kim et al. Nature 2014), we 
found that proteins corresponding to interactions used in our study 
were significantly more likely to be co-expressed than random 
protein pairs, confirming the in vivo biological significance of the 
interactions used in the study (Supplementary Note Fig. 1). We 
have added this result to the revised manuscript. 
 
To demonstrate how matching disruption profiles can provide 
insight towards the molecular mechanisms of disease, we highlight 
three mutations on SMAD4 (Fig. 4f), a crucial protein in the 
TGFβ/SMAD signaling pathway. Two mutations on SMAD4, 
E330K and G352R, result in juvenile polyposis (Gallione et al. Am 
J Med Genet 2010; Sayed et al. Ann Surg Oncol 2002) while a 
third mutation, N13S, results in a clinically distinct disease, 
pulmonary arterial hypertension (Nasim et al. Hum Mut 2011). We 
observed that E330K and G352R cluster together in three 
dimensional space near the SMAD4-SMAD3 interaction interface 
(Fig. 4g). N13S, in contrast, is positioned away from E330K and 
G352R near the N-terminus of SMAD4. In agreement with the 
proximal clustering of E330K and G352R near the SMAD4-SMAD3 
interaction interface, both mutations disrupted the SMAD4 
interaction with SMAD3 in addition to disrupting the SMAD4-
SMAD9 interaction (Fig. 4f). These SMAD protein disruption 
results agree with previous evidence implicating the TGFβ/SMAD 
signaling pathway in the formation of juvenile polyposis (Jung et al. 
Gastroent 2017; Massangue. Cell 2008). In contrast, the N13S 
mutation left SMAD4 interactions with SMAD3 and SMAD9 intact, 
which agrees with a previous study that found no evidence that 
N13S alters SMAD-mediated signaling (Nasim et al. Hum Mut 
2011). Collectively, these results demonstrate how mutations with 
the same disruption profiles can lead to the same disease 
phenotype. 
 
As suggested by the reviewer, we also performed a 
physiologically-relevant study using disruptive mutations found in 
the GTPase, SEPT12. SEPT12 is known to interact with other 
septin proteins found in the SEPT2, SEPT6, and SEPT7 protein 
subgroups, to form a filamentous structure at the sperm annulus 
(Mostowy and Cossart Nat Rev Mol Cell Biol 2012; Sellin et al. Mol 
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Biol Cell 2014; Kuo et al. J Cell Sci 2015). Mutation-induced 
perturbations to SEPT12 interactions with these septin subgroup 
proteins can compromise the structural integrity of the sperm 
annulus to result in male infertility. Indeed, an infertility-causing 
mutation in men, SEPT12_D197N, was previously shown to 
disrupt interactions with septin proteins found at the sperm annulus 
and was shown to result in a disorganized sperm annulus and poor 
sperm motility in a mouse model for SEPT12_D197N (Kuo et al. J 
Cell Sci 2015). 
 
We identified a rare variant in SEPT12, G169E (MAF = 0.02%), 
that disrupted interactions with SEPT7 as well as the SEPT2 
subgroup proteins, SEPT1 and SEPT5 (Fig. 5c). The infertility-
causing mutation, D197N, disrupted these exact same septin 
interaction partners by Y2H. Using homology modeling, we 
observed that both G169E and D197N mutations occur at SEPT12 
interaction interface residues with SEPT1 (Fig. 5d) and confirmed 
by co-IP that both mutations disrupt the SEPT12-SEPT1 
interaction without reducing protein stability in 293T cells (Fig. 5e). 
These results demonstrate that these mutations function by 
specifically perturbing SEPT12 protein-protein interactions as 
opposed to disrupting SEPT12 stability as a whole. 
 
To investigate whether these matching SEPT12 molecular 
phenotypes result in corresponding organismal phenotypes, we 
generated Sept12G169E mice using a CRISPR-editing approach. 
We found that homozygous Sept12G169E males were subfertile in 
comparison to wild-type males (Fig. 5f). Notably, sperm from 
homozygous Sept12G169E males exhibited poor motility (Fig. 5g), a 
phenotype also reported for Sept12D197N male mice (Kuo et al. J 
Cell Sci 2015).  
 
Taken in context with our in vitro disruption data, our mouse model 
strongly suggests that SEPT12_G169E is an infertility-associated 
mutation in men and further demonstrates how shared disruption 
profiles can be used to prioritize candidate disease-associated 
mutations. Lastly, we note that no individuals homozygous for 
SEPT12_G169E are reported in ExAC, potentially explaining why 
SEPT12_G169E has not been previously reported as an infertility-
associated variant. 
 
We have updated our manuscript to include our SMAD4 and 
SEPT12 analyses. 

Excerpt from 
Revised Manuscript 

[Supplementary Note 1] 
We further note that Y2H has been extensively demonstrated to detect biologically meaningful 
interactions across many organisms in many studies1,3-8. To further confirm the biological 
significance of the interactions used in this study, we examined the co-expression of protein 
abundance levels corresponding to interactions used in our study. Using protein expression levels 
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for 30 adult and fetal tissues and cell types from the Human Proteome Map9, we found that 
proteins corresponding to interactions used in our study were significantly more likely to be co-
expressed than random protein pairs, confirming the in vivo biological significance of the 
interactions used in the study (Supplementary Note Fig. 1). 

 
[Page 9] 
To demonstrate how pairs of disease-associated mutations on the same gene with matching 
disruption profiles can result in the same disease, we highlight three disease-associated mutations 
on SMAD4 (Fig. 4f), a crucial protein in the TGFβ/SMAD signaling pathway. Two mutations on 
SMAD4, E330K and G352R, are associated with juvenile polyposis54,55 while a third mutation, 
N13S, results in a clinically distinct disease, pulmonary arterial hypertension56. We observed that 
E330K and G352R cluster together in three dimensional space near the SMAD4-SMAD3 
interaction interface (Fig. 4g). N13S, in contrast, appears positioned away from E330K and 
G352R near the N-terminus of SMAD4. In agreement with the proximal clustering of E330K and 
G352R near the SMAD4-SMAD3 interaction interface, both mutations disrupted the SMAD4 
interaction with SMAD3 in addition to disrupting the SMAD4-SMAD9 interaction (Fig. 4f). 
These SMAD protein disruption results agree with previous evidence implicating the 
TGFβ/SMAD signaling pathway in the formation of juvenile polyposis57,58. In contrast, the N13S 
mutation left SMAD4 interactions with SMAD3 and SMAD9 intact, which agrees with a previous 
study that found no evidence that N13S alters SMAD-mediated signaling56.  
 
[Page 10] 
To further show how potentially physiologically-relevant mutations can be identified using shared 
disruption profiles, we also characterized a pair of disruptive mutations on the GTPase, SEPT12: 
a rare variant not known to associate with any disease phenotypes, G169E (MAF = 0.02%), and 
D197N, an infertility-causing mutation in men61. Both mutations perturbed interactions with 
SEPT7 and SEPT2 subgroup proteins, SEPT1 and SEPT5 (Fig. 5c). These perturbations are 
particularly relevant because SEPT12 is known to interact with other septin proteins found in the 
SEPT2, SEPT6, and SEPT7 protein subgroups to form a filamentous structure at the sperm 
annulus62-64. Moreover, the infertility-causing mutation SEPT12_D197N, which was previously 
shown to perturb interactions with these same septin subgroup proteins, resulted in a disorganized 
sperm annulus and poor sperm motility in a mouse model for D197N64. Lastly, using homology 
modeling, we observed that both G169E and D197N mutations occur at SEPT12 interaction 
interface residues with SEPT1 (Fig. 5d) and confirmed that both mutations disrupt the SEPT12-
SEPT1 interaction without reducing protein stability in 293T cells (Fig. 5e). These results 
demonstrate that these mutations function by specifically perturbing SEPT12 protein-protein 
interactions as opposed to disrupting SEPT12 stability as a whole. 

We then investigated whether these matching SEPT12 molecular phenotypes result in 
corresponding organismal phenotypes by generating Sept12G169E mice using a CRISPR-editing 
approach65. We found that homozygous Sept12G169E males were subfertile in comparison to wild-
type males (Fig. 5f). Notably, sperm from homozygous Sept12G169E males exhibited poor motility 
(Fig. 5g), a phenotype also reported for Sept12D197N male mice64. These observations of poor 
sperm motility and subfertility in mice suggest that SEPT12_G169E may deleteriously impact 
fertility in men homozygous for this mutation, although we note that no individuals homozygous 
for SEPT12_G169E are reported in ExAC. Taken together with our in vitro data, these results also 
demonstrate how shared disruption profiles can be used to prioritize candidate disease-associated 
mutations. 

 

Ref3.3 – Explanation for why PSPH mutation T152I does not 
cause a pathological phenotype – 

Reviewer 
Comment 

In consistency with the above, the PSPH T152I SNV needs 
further exploration. It exhibits the same enzymatic 
characteristics as the disease-associated mutation D32N. 
Why it does not cause any pathological phenotype as D32N 
mutant should be explained. 

Author 
Response 

The reviewer correctly notes that despite having the same 
enzymatic characteristics as the disease-associated mutation 
D32N, the rare variant, T152I (MAF = 0.10%), does not cause any 
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known pathological phenotype. We note that D32N is deleterious 
in a compound heterozygous background. Specifically, in a study 
by Veiga-da-Cunha and colleagues, the authors characterize two 
mutations, D32N and M52T, which are each inherited from healthy 
parents (Veiga-da-Cunha et al. Eur J Hum Genet 2003). In their 
study, D32N was reported to lower Vmax for PSPH by ~50% while 
M52T nearly abolishes PSPH catalytic activity. The patient 
therefore lacks a wild-type, functional copy of PSPH. 
 
As for T152I, we would like to point out that no T152I homozygous 
individuals are reported in ExAC, potentially explaining why no 
individuals carrying a T152I mutation have a reported pathological 
phenotype.  
 
We have updated our manuscript to further clarify this point. 

Excerpt from 
Revised Manuscript 

[Page 10] 
To do this, we tested two mutations with matching disruption profiles on the protein PSPH (Fig. 
5a):  (i) T152I, a rare variant (MAF = 0.10%) in ExAC that disrupts an interaction with itself and 
(ii) D32N, which also disrupts an interaction with itself and causes phosphoserine phosphatase 
deficiency in a compound heterozygous individual with two deleterious PSPH mutations59. 
 
[Page 10] 
Because phosphoserine phosphatase deficiency is a recessively inherited condition59, our findings 
suggest that T152I may lead to the same disease phenotype in homozygous or compound 
heterozygous individuals. 

 

Ref3.4 – Distinguish deleterious effects on PPIs and on 
enzymatic activity – 

Reviewer 
Comment 

The authors provide two examples of functional defects of 
SNVs. These were demonstrated by in vitro enzymatical assays 
which do not require any PPI in the reactions. It is 
necessary to distinguish the deleterious effects on PPIs 
and on enzyme activities, which should not be the same. 

Author 
Response 

The reviewer comments that the deleterious effects of 
perturbations to protein-protein interactions should not be the 
same as alterations to enzymatic activity. In general, we agree with 
the reviewer’s comment; however, PSPH is a notable exception. 
 
In our disruption assays, we observed that a PSPH rare variant, 
T152I, disrupted an interaction with itself while leaving all other 
interactions intact (Fig. 5a). Previous research has reported the 
importance of PSPH dimerization, noting that PSPH is a dimer in 
solution and that “mutant residues such as Y138K, F139K, and 
Y143K, which could interfere with dimer interfaces, exist in an 
aggregated and insoluble form” (Kim H-Y et al. JBC 2002). In this 
context, proper dimerization is actually crucial to PSPH enzymatic 
activity. Since the T152I rare variant disrupts an interaction with 
itself, we hypothesized that T152I would also reduce enzymatic 



19 
 

activity. Indeed, in vitro measurements of PSPH enzymatic activity 
showed that the T152I mutant protein reduced activity to the same 
extent as D32N while a non-disruptive mutation, T149M, left 
enzymatic activity intact (Fig. 5b). We further note that 
dimerization may also be crucial for AKR7A2 enzymatic activity 
since the mutation A142T both disrupts an interaction with itself 
(Fig. 3f) and reduces AKR7A2 enzymatic activity (Fig. 3g). 
 
Nonetheless, changes in enzymatic activity are not evidence of 
particular protein-protein interactions occurring or not occurring. 
Moreover, disruptions to protein homodimers only comprise 61 of 
the 669 (9.1%) total disrupted interactions reported in our dataset. 
As such, in an effort to show that shared disruption profiles can be 
applied to other categories of interaction perturbations, we also 
characterized disruptive mutations on the GTPase, SEPT12. 
 
As previously discussed in Ref3.2, we found that the SEPT12 rare 
variant, G169E (MAF = 0.02%), and the infertility-causing variant, 
D197N, each disrupted the same interactions with other septin 
proteins (Fig. 5c). We also observed that both G169E and D197N 
mutations occur at SEPT12 interaction interface residues with 
SEPT1 (Fig. 5d) and confirmed by co-IP that both mutations 
disrupt the SEPT12-SEPT1 interaction without reducing protein 
stability in 293T cells (Fig. 5e). These results demonstrate that 
these mutations function by specifically perturbing SEPT12 
protein-protein interactions as opposed to disrupting SEPT12 
stability as a whole. 
 
Considering that the infertility-causing mutation SEPT12_D197N 
has been previously shown to disrupt interactions with other septin 
proteins and that these perturbations result in a defective sperm 
annulus (Kuo et al. J Cell Sci 2015), we then generated CRISPR-
edited mice for SEPT12_G169E to investigate whether this equally 
disruptive variant also impacts fertility. We found that homozygous 
Sept12G169E mice were subfertile (Fig. 5f) and that sperm from 
these homozygous Sept12G169E males exhibited poor motility (Fig. 
5g), a phenotype also reported for Sept12D197N male mice (Kuo et 
al. J Cell Sci 2015). This result therefore confirms that SEPT12 
interaction perturbations induced by the G169E rare variant are 
physiologically relevant and broadly demonstrates how shared 
disruption profiles can be used to prioritize candidate disease-
associated mutations. 
 
We have updated the manuscript to better articulate how PSPH 
dimerization is coupled to its enzymatic activity in addition to 
discussing our SEPT12 example. 
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Excerpt from 
Revised Manuscript 

[Page 10] 
To do this, we tested two mutations with matching disruption profiles on the protein PSPH (Fig. 
5a):  (i) T152I, a rare variant (MAF = 0.10%) in ExAC that disrupts an interaction with itself and 
(ii) D32N, which also disrupts an interaction with itself and causes phosphoserine phosphatase 
deficiency in a compound heterozygous individual with two deleterious PSPH mutations59. An 
additional PSPH non-disruptive rare variant, T149M, was included as a control. Since PSPH exists 
as a dimer in solution and can aggregate when mutations that interfere with dimerization are 
introduced60, we reasoned that mutations that disrupt this dimerization may also reduce PSPH 
enzymatic activity. We therefore purified recombinant wild-type, D32N, T152I, and T149M 
PSPH proteins and measured for changes in phosphatase activity for PSPH mutants relative to 
wild-type using a malachite green assay. 
 
[Page 10] 
To further show how potentially physiologically-relevant mutations can be identified using shared 
disruption profiles, we also characterized a pair of disruptive mutations on the GTPase, SEPT12: 
a rare variant not known to associate with any disease phenotypes, G169E (MAF = 0.02%), and 
D197N, an infertility-causing mutation in men61. Both mutations perturbed interactions with 
SEPT7 and SEPT2 subgroup proteins, SEPT1 and SEPT5 (Fig. 5c). These perturbations are 
particularly relevant because SEPT12 is known to interact with other septin proteins found in the 
SEPT2, SEPT6, and SEPT7 protein subgroups to form a filamentous structure at the sperm 
annulus62-64. Moreover, the infertility-causing mutation SEPT12_D197N, which was previously 
shown to perturb interactions with these same septin subgroup proteins, resulted in a disorganized 
sperm annulus and poor sperm motility in a mouse model for D197N64. Lastly, using homology 
modeling, we observed that both G169E and D197N mutations occur at SEPT12 interaction 
interface residues with SEPT1 (Fig. 5d) and confirmed that both mutations disrupt the SEPT12-
SEPT1 interaction without reducing protein stability in 293T cells (Fig. 5e). These results 
demonstrate that these mutations function by specifically perturbing SEPT12 protein-protein 
interactions as opposed to disrupting SEPT12 stability as a whole. 

We then investigated whether these matching SEPT12 molecular phenotypes result in 
corresponding organismal phenotypes by generating Sept12G169E mice using a CRISPR-editing 
approach65. We found that homozygous Sept12G169E males were subfertile in comparison to wild-
type males (Fig. 5f). Notably, sperm from homozygous Sept12G169E males exhibited poor motility 
(Fig. 5g), a phenotype also reported for Sept12D197N male mice64. These observations of poor 
sperm motility and subfertility in mice suggest that SEPT12_G169E may deleteriously impact 
fertility in men homozygous for this mutation, although we note that no individuals homozygous 
for SEPT12_G169E are reported in ExAC. Taken together with our in vitro data, these results also 
demonstrate how shared disruption profiles can be used to prioritize candidate disease-associated 
mutations. 

 

Ref3.5 – Disruptive SNVs may be more prevalent than reported 
here – 

Reviewer 
Comment 

Furthermore, the estimation of many parameters was based on 
two PPI assays: YTH and PCA. As the data provided by the 
authors and work from many previous studies, the recovery 
rate is pretty low. This might skew the estimation of the 
true value of disruptive SNV fraction, and should definitely 
be notified. 

Author 
Response 

We agree with the reviewer that no high-throughput assay can 
detect all interactions (Venkatesan et al. Nature Methods 2009; 
Braun et al. Nature Methods 2009). If we could detect additional 
interactions (i.e., have an assay with a higher recovery rate), the 
extent of disruptions detected would only be higher. Thus, the 
number of disruptions that we detect, and the corresponding 
fraction of disruptive SNVs presented in the manuscript are lower 
bound estimates of the actual disruptive SNVs, further highlighting 
the significance of our findings. 
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Additionally, detecting a lower bound for the actual fraction of 
disruptive SNVs does not affect any of our results on relative trends 
across categories (such as fraction of disruptive SNVs across 
allele frequencies) as we uniformly detect a lower bound on 
disruptive SNVs in all categories. Moreover, all the absolute values 
presented (such as the fraction of disruptive SNVs for common 
variants) would be even more significant if we could detect 
disruptions corresponding to all interactions. 
 
We have amended the discussion section of our manuscript to 
include comments about how the fraction of disruptive variants is 
actually a lower-bound estimate due to low recovery rate of Y2H. 

Excerpt from 
Revised Manuscript 

[Page 11] 
It should be noted that, like any high-throughput assay, Y2H cannot detect all interactions of a 
given protein. If we were able to detect more interactions, we would likely discover more 
interaction disruptions. Therefore, this 10.5% figure represents only a lower-bound estimate for 
the number of disruptive missense variants per individual.

 

Ref3.6 – Possibility that PPI disruptions are compensated by 
redundant parallel pathways – 

Reviewer 
Comment 

In addition, the authors mention that a disruption is mild 
and only partially interferes the involved biochemical 
process. I think it's also possible that the disruption can 
be compensated by redundant parallel pathways.  

Author 
Response 

The reviewer suggests the possibility that redundant parallel 
pathways may compensate for the potentially deleterious impact 
of disruptive SNVs. We first wish to clarify that our high-throughput 
assays for detecting disrupted protein-protein interactions (Y2H 
and PCA) are binary; each mutant protein-protein interaction pair 
is tested separately. As a result, redundant parallel pathways 
cannot compensate for any PPI disruptions observed in our binary 
interaction assays. 
 
Nonetheless, the reviewer is correct to point out that within a 
cellular context, redundant parallel pathways can compensate for 
the otherwise potentially deleterious impact of disrupted PPIs. 
Motivated by the reviewer’s excellent point, we explored the extent 
to which redundant parallel pathways may actually offset the 
potentially deleterious impact of disruptive variants. While several 
anecdotal examples of redundant parallel pathways have been 
described in literature, we note that redundant, duplicated genes 
are yet to be defined more systematically. Since duplicate genes 
can also compensate for corresponding proteins impacted by a 
disruptive mutation, we took advantage of the Duplicated Genes 
Database which lists 3,543 duplicate genes across 945 different 
gene groups (Ouedraogo et al. PLOS ONE 2012). We then 
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examined whether disruptive SNVs occurred more frequently 
within genes with reported duplications in comparison to non-
disruptive SNVs but found no significant differences between both 
groups (~12% and ~10%, respectively; P value = 0.55; 
Supplementary Fig. 3a). To validate the robustness of this result, 
we further defined our own set of functionally similar proteins by 
performing BLAST for the human proteome against itself and 
generating a list of protein groups in which constitutive proteins 
share greater than 90% sequence identity and coverage. Again, 
we found that the fraction of SNVs that are disruptive were not 
enriched within duplicate gene groups in comparison to non-
disruptive SNVs (Supplementary Fig. 3b). Furthermore, this 
result held across all sequence identity and coverage cutoff values 
(Supplementary Fig. 3b). These results therefore indicate that 
while at the cellular level disruptive variants can be compensated 
by genes with redundant functions, such compensation does not 
appear to affect PPI disruption rates.   
 
We have amended our manuscript to include these analyses. 

Excerpt from 
Revised Manuscript 

[Page 8] 
Notably, duplicate or functionally similar genes can compensate for corresponding proteins 
impacted by a disruptive mutation. However, we found no enrichment for disruptive variants 
within a published set of duplicate genes51 in comparison to non-disruptive variants 
(Supplementary Fig. 3a), nor within a custom-generated set of sequence-conserved, functionally 
similar proteins (Supplementary Fig. 3b; Methods). 
 
[Methods] 
Duplicate genes were obtained from the Duplicated Genes Database51 which lists 3,543 duplicate 
genes across 945 different gene groups. In order to compare the robustness of these duplicate gene 
definitions across many different cutoffs, we additionally defined our own metric for protein 
similarity by running a BLAST of the human proteome against itself and eliminating all pairs of 
proteins with less than 40% sequence identity. The remaining pairs were scored using a weighted 
combination of the pair’s percent identity and the coverage with respect to each protein. In 
Supplementary Fig. 3b, we flexibly defined duplicate genes as all pairs of genes whose score 
meets a minimal duplication threshold tested across all valid ranges (where 0 for “Duplication 
Threshold” represents no appreciable similarity and 1 represents perfect identity). Score is 
calculated as: 
 

݁ݎ݋ܿܵ ൌ ߙ	 ∗ ݕݐ݅ݐ݊݁݀ܫݐ݊݁ܿݎ݁ܲ ∗ ஺௩௚݁݃ܽݎ݁ݒ݋ܥ ൅ ሺ1 െ ሻߙ ∗  ஺௩௚݁݃ܽݎ݁ݒ݋ܥ
 
where α = 0.95 and CoverageAvg is the average coverage between both proteins. 

 

Ref3.7 – Better discussion for medical inference of disruptive 
SNVs – 

Reviewer 
Comment 

Moreover, the authors did not describe the whole scenario 
of the medical inference. They suggested that a SNV might 
contribute liability to certain genetic diseased when 
combined with mutations in other genes involved in the same 
biochemical process. However, this is a rare situation.  

Author 
Response 

For Mendelian recessive disease mutations, the reviewer correctly 
comments that a single mutation, present in a homozygote, is 
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sufficient for causing disease. Indeed, we and others have 
systematically explored the impact of Mendelian disease mutations 
on protein-protein interactions (Wei et al. PLOS Genet 2014; Sahni 
et al. Cell 2015). But many Mendelian diseases also feature high 
levels of heterogeneity, where there are multiple distinct variants 
that can cause disease. In these cases, individuals with Mendelian 
disease are instead heterozygous for two distinct, deleterious 
mutations (a separate mutation on each gene copy). The 
compound heterozygous D32N mutation on PSPH is one such 
example in which the D32N mutation in conjunction with a second 
deleterious mutation, M52T, results in disease. It is now commonly 
accepted that for many Mendelian disorders, most cases are in fact 
heterozygous for two distinct mutant alleles. 
 
In the case of complex disease, including cancer and heart disease 
however, a single mutated gene is not the cause of the disease, 
but rather multiple mutations on more than one gene are needed 
to cause the disorder. Each disease-associated variant in complex 
disease therefore contributes a certain measure of disease risk 
that can be quantified by a GWAS, and some authors consider 
these effects to be approximately additive across loci (Visscher 
and Goddard. Genetics 2019).  It is also possible, as exemplified 
in our study, to functionally assess the effects of mutations on 
protein function through experimental assays. 
 
Studying complex disease is difficult since very often no single 
variant alone is fully penetrant. Nonetheless, the simplest case of 
complex disease, digenic inheritance in which two genes both 
contribute to a single phenotype, is actually quite prevalent. 
Searching HGMD (Stenson et al. Human Genet 2017) yields a total 
of 365 mutations that contribute to digenic inheritance. Moreover, 
a search through PubMed for “digenic mutations” yielded 378 
papers, although this strictly refers to cases in which two 
heterozygous mutations in different genes must occur together for 
the disease phenotype to manifest. Cases in which the impact of a 
disease-causing mutation in one gene is influenced by a 
polymorphic variant in another gene are far more common and are 
extensively documented in HGMD. Such variants are often only 
partially penetrant, resulting in disease in only particular genetic 
backgrounds (Cooper et al. Hum Genet 2013). While dissecting 
how these variants modulate each other’s impact is not 
straightforward, individually assessing the impact of these variants 
in isolation is a crucial first step towards understanding how these 
variants function epistatically. In this context, our study represents 
an important resource for examining what fraction of population 
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variants are functional and could conceivably play a role in disease 
risk as a result. 
 
We have added this discussion to our revised manuscript. 

Excerpt from 
Revised Manuscript 

[Page 11] 
Co-occurrence of AKR7A2_A142T with similarly disruptive mutations in ABAT or SSADH 
could therefore result in a neurological disorder that would not otherwise occur in an individual 
harboring only a single disruptive mutation.  

Such relationships are frequent in complex disease, including cancer and heart disease, which 
unlike Mendelian mutations, require multiple mutations on more than one gene to cause a disorder. 
Each disease-associated mutation in complex disease therefore contributes a certain measure of 
disease risk that can be quantified by a GWAS, and some authors consider these effects to be 
approximately additive across loci72. Measuring how one mutation modulates the impact of 
another is challenging; however, measuring which mutations are individually functional is a 
crucial first step. Hence, we anticipate that our SNV-interaction network will serve as a pivotal 
framework for defining the epistatic relationships that modulate the impact of disruptive variants, 
particularly for partially penetrant variants that only result in disease in certain genetic 
backgrounds (Supplementary Note 4). 

 
[Supplementary Note 4] 
Studying complex disease is difficult since very often no single variant alone is fully penetrant. 
Nonetheless, the simplest case of complex disease, digenic inheritance in which two genes both 
contribute to a single phenotype, is actually quite prevalent. Searching HGMD10 yields a total of 
365 mutations that contribute to digenic inheritance. Moreover, a search through PubMed for 
“digenic mutations” yielded 378 papers, although this strictly refers to cases in which two 
heterozygous mutations in different genes must occur together for the disease phenotype to 
manifest. Cases in which the impact of a disease-causing mutation in one gene is influenced by a 
polymorphic variant in another gene are far more common and are extensively documented in 
HGMD. Such variants are often only partially penetrant, resulting in disease in only particular 
genetic backgrounds11. While dissecting how these variants modulate each other’s impact is not 
straightforward, individually assessing the impact of these variants in isolation is a crucial first 
step towards understanding how these variants function epistatically. In this context, our study 
represents an important resource for examining what fraction of population variants are functional 
and could conceivably play a role in disease risk as a result. 

 

Ref3.8 – Pharmacogenomic and toxicogenomic implications of 
our disruptive SNV data – 

Reviewer 
Comment 

I believe the results if this study might have more 
implications in pharmacogenomics and toxicogenomics. For 
example, the disruptive SNVs may affect the sensitivities 
to certain drugs and environmental cues.  

Author 
Response 

We thank the reviewer for their excellent suggestion. We 
absolutely agree that the results in this study carry implications for 
pharmacogenomics and toxicogenomics. Disruptive SNVs on 
enzymes may alter the metabolic kinetics of impacted enzymes, 
while SNVs on transporters and targets of drugs may lead to 
changes in the pharmacokinetic and pharmacodynamic properties 
of their corresponding proteins. These effects combined can 
contribute to variability of drug efficacy and toxicity among the 
human population. For example, the D816H/V mutations on a 
receptor tyrosine kinase, KIT, confers resistance to imatinib and 
sunitinib by shifting the conformational equilibrium of KIT (Gajiwala 
et al. PNAS 2009). The S9G population variant on dopamine 
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receptor 3 (DRD3) is associated with a lower risk of gastrointestinal 
side effects in response to levodopa treatment (Rieck et al. 
Pharmacogenomics J. 2018).  
 
In our study, we also characterized the impact of a common variant 
A142T (MAF = 6.4%) on the enzyme AKR7A2 and showed that 
A142T significantly reduced the specific activity of AKR7A2 for its 
native substrate, succinic semialdehyde. Notably, AKR7A2 is an 
aldo-keto reductase that can metabolize anti-cancer drugs, 
including doxorubicin and daunorubicin. Indeed, a previous study 
characterizing the effects of common SNVs on aldo-keto 
reductases found that AKR7A2_A142T significantly decreased the 
in vitro metabolism of both doxorubicin and daunorubicin by 
AKR7A2, which could have important implications in cancer 
therapy (Bains et al. J. Phamacol. Exp. Ther. 2010). This 
agreement between the disruption profile of AKR7A2_A142T and 
its compromised enzymatic activity for both the native and drug 
substrates of AKR7A2 suggests that disruptive SNVs on enzymes 
may be excellent candidates for identifying mutations that 
compromise drug-protein interactions. 
 
To further demonstrate the potential application of our dataset to 
pharmacogenomics and toxicogenomics, we intersected our 
dataset with four sets of genes: all human enzymes, drug-
metabolizing enzymes, drug targets, and drug transporters. The 
list of all human enzyme genes was obtained from HumanCyc 
version 21.5 (Romero, et al. Genome Biol 2004), while the lists of 
drug-related genes were obtained from DrugBank version 5.1.2 
(Wishart et al. Nucleic Acids Res 2017). Among the SNVs that we 
tested, 350 were on enzymes, and 84 of them disrupted at least 
one interaction. More specifically, 54 SNVs were tested on drug-
metabolizing enzymes and 12 of them were disruptive. In addition, 
227 SNVs were tested on drug targets, 66 of which disrupted at 
least one interaction. Lastly, five SNVs were tested on drug 
transporters and thee of them were disruptive. These numbers 
highlight the potential impact of SNVs on variability of drug 
response and toxicity among the population.  
 
We have added a table (Supplementary Table 9) summarizing 
these numbers and have included these points in the Discussion 
section. 

Excerpt from 
Revised Manuscript 

[Page 7] 
In addition to impacting SSA turnover, the A142T mutation is reported to significantly decrease 
the in vitro metabolism of both doxorubicin and daunorubicin by AKR7A2, which could have 
important implications in cancer therapy47. 
 
[Page 12] 
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The results of our study may carry important implications in related fields such as 
pharmacogenomics and toxicogenomics. Disruptive SNVs on enzymes may alter the metabolic 
kinetics of impacted enzymes, while SNVs on transporters and targets of drugs may lead to 
changes in the pharmacokinetic and pharmacodynamic properties of their corresponding proteins. 
For example, the D816H/V mutations on the receptor tyrosine kinase, KIT, confers resistance to 
imatinib and sunitinib by shifting the conformational equilibrium of KIT73. As a potential resource 
to pharmacogenomics and toxicogenomics, we provide a table of all disruptive SNVs potentially 
relevant to drug action (Supplementary Table 9; Methods). 
 
[Methods] 
To generate a dataset of disruptive SNVs potentially relevant to pharmacogenomics and 
toxicogenomics, we intersected our dataset with four sets of genes: all human enzymes, drug-
metabolizing enzymes, drug targets, and drug transporters. The list of all human enzyme genes 
was obtained from HumanCyc version 21.591, while the lists of drug-related genes were obtained 
from DrugBank version 5.1.292. Among the SNVs that we tested, 350 were on enzymes, and 84 
of them disrupted at least one interaction. More specifically, 54 SNVs were tested on drug-
metabolizing enzymes and 12 of them were disruptive. In addition, 227 SNVs were tested on drug 
targets, 66 of which disrupted at least one interaction. Lastly, five SNVs were tested on drug 
transporters and three of them were disruptive. These numbers highlight the potential impact of 
SNVs on variability of drug response and toxicity among the population.  These SNVs are 
provided in Supplementary Table 9.

 



Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
The manuscript has been reworked and improved substantially, including expansion on examples 
and more in death discussion. Since I was excited about the paper already in the first round, I 
recommend acceptance as is.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
Thanks for your responses to my comments. I am a little disappointed (!) that there is no 
enrichment for disruption of GWAS-linked coding variants, but the result it clean and I think adds 
to the manuscript. 
 
 
 
Reviewer #3:  
Remarks to the Author:  
The authors successfully addressed all of my questions and I therefore recommend this manuscript 
for publication.  
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