
Bioinformatics, YYYY, 0–0
doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY
Application Note

Genome analysis
BioQueue: a novel pipeline framework to
accelerate bioinformatics analysis
Li Yao1,*, Heming Wang2, Yuanyuan Song1 and Guangchao Sui1,*
1College of Life Science, Northeast Forestry University, Harbin 150040, China, 2School of Life Science
and Technology, Shanghai Tech University, Shanghai 200031, China.

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Motivation: With the rapid development of Next-Generation Sequencing, a large amount of data is
now available for bioinformatics research. Meanwhile, the presence of many pipeline frameworks
makes it possible to analyse these data. However, these tools concentrate mainly on their syntax and
design paradigms, and dispatch jobs based on users’ experience about the resources needed by the
execution of a certain step in a protocol. As a result, it is difficult for these tools to maximize the potential
of computing resources, and avoid errors caused by overload, such as memory overflow. Here, we
introduce BioQueue, a web-based framework that contains a checkpoint before each step to
automatically estimate the system resources (CPU, memory and disk) needed by the step and then
dispatch jobs accordingly. BioQueue possesses a shell command-like syntax instead of implementing
a new script language, which means most biologists without computer programming background can
access the efficient queue system with ease.
Availability: BioQueue is freely available at https://github.com/liyao001/BioQueue. The extensive
documentation can be found at http://bioqueue.readthedocs.io.
Contact: li_yao@outlook.com or gcsui@nefu.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Using pipeline frameworks to analyze data produced by the Next-
Generation Sequencing techniques is now a common task in current
biomedical research. Basically, a pipeline framework provides two
functions; the explicit one is the description of protocols (or workflow,
pipe-line called in other software), and the ambiguous one is how to
dispatch jobs to achieve a maximum efficiency in analyzing data.

Actually, many frameworks focus on a design philosophy of describing
a protocol to make it compatible with various demands and easy to scale
up from a single laptop to clouds or clusters. For example, Galaxy (Goecks
et al., 2010) provides pre-defined toolsheds and a web-based Graphical
User Interface (GUI) to help users to create protocols. Since GUI may
limit the flexibility, other queue systems emerged with command line
interface and a build-in domain-specific language (DSL) to describe
protocols, such as Ruffus (Goodstadt, 2010) and BigDataScript (Cingolani
et al., 2015). This improvement can ensure the flexibility, but it leads to a

steep learning curve. On the other hand, it is common for pipelines to run
multiple jobs in parallel to improve the efficiency of analysis. Importantly,
all tools mentioned above assume that users have extensive knowledge in
properly allocating system resources for each job when analyzing data,
which obviously does not apply to many circumstances.

Here, we introduce BioQueue, a novel queue system that, when
dispatching jobs, can automatically estimate the system resources needed
by the execution of a certain step and then optimize the execution of the
queue to maximize the efficiency. Additionally, based on a design
paradigm of configuration, BioQueue provides a web-based workbench
and implements an explicit syntax (Leipzig, 2016) to keep an optimal
balance between flexibility and simplicity.

2 Job dispatch
The aim of BioQueue is to improve the efficiency and robustness of
bioinformatics research. One common strategy is to use as many as CPU
cores available to reduce time elapsed on context switching. The other

BioQueue

strategy is to run different jobs in parallel to efficiently use computing
resources. However, due to the design of a software or limited system
resources, many currently available tools have following flaws:

cannot fully use the system resources allotted to them (See
Supplementary Fig. 1).

may not achieve an ideal efficiency or can even generate errors (such
as memory overflow) when running multiple jobs
simultaneously.

To circumvent these problems, BioQueue will calculate the hash for a
certain step and then check the presence of any existing prediction mod-el
for it. If a model of predicting the sources required by the step is generated,
BioQueue will use it; otherwise, BioQueue will collect the size of inputs,
CPU utilization, memory usage (Supplementary Note 1) and disk usage
information of this step as training materials. Resources needed by the step
will be estimated by the following function:

When running on a personal computer or clouds, BioQueue implements
a greedy algorithm to dispatch jobs with these estimated data to achieve
an optimal balance between the efficiency and system resources (CPU,
memory and disk). One special circumstance is that, when running a step
for the first time, BioQueue will strictly limit the parallelism to reduce the
possibility of creating an error. We benchmarked BioQueue against other
four popular pipeline frameworks following the protocol presented in
Supplementary Fig. 2 and found that BioQueue can significantly shorten
the elapsed time (Fig. 1 and Supplementary Fig. 3).

We also developed a plug-in system (Supplementary Note 2) to provide
support to various distributed resource managers (DRMs), so BioQueue
can run on clusters smoothly. On these platforms, BioQueue cooperates
with DRMs by guiding them to allocate a proper quantity of CPU cores
and memory for the execution of each step. More detailed information
regarding how BioQueue generates a prediction model are depicted in
Supplementary Figs. 4 and 5.

3 Language design
One very conspicuous characteristic of data analysis in bioinformatics is
that researchers usually need to analyze a large amount of data by using a
particular protocol and other researchers may also need to use the same
protocol to analyze their own data. Therefore, improving the reusability of
a protocol is very crucial. To achieve this goal, BioQueue explicitly
differentiates two concepts. One concept is a “protocol”, a chain of steps
consisting of software and its parameters that define the behavior of the
analysis. The second concept is a “job”. When a “protocol” is assigned
with specific experimental variables, like input files, output files or sample
name, the protocol will turn into a runnable “job”.

When creating a protocol, BioQueue implements a shell command-like
syntax with wildcards (Table 1 shows a typical protocol in BioQueue)
rather than a new script language. This is user-friendly to general
biologists, because they do not have to learn programming, but only need
to know the parameters of the tools that are easy to be found at the tools’
papers. Though BioQueue explicitly separates the concepts of “protocol”
and “job”, a protocol can be converted into a runnable job without
assigning any experimental values. However, we strongly recommend
researchers to replace those values with wildcards (strings embraced with

braces, like “{ThreadN}”) to make the protocol reusable and reproducible.
There are three types of wildcards in BioQueue:

• Pre-defined wildcards, which provide support for file
mapping and multithread.

• References, the reference data which might be cited in multiple
protocols, such as reference human genome and gene annotation.

• User-defined wildcards, or experimental variables, which
need to be assigned when creating a job.

Table 1. A typical protocol (Pertea et al., 2016) implemented in
BioQueue.

Step Software Parameter

 1 hisat2 -p {ThreadN} --dta -x {HISAT2_HG38} -1 {Input-
File:1} -2 {InputFile:2} -S {EXP}.sam

 2 samtools sort -@ {ThreadN} -o {EXP}.sorted.bam {EXP}.sam
 3 stringtie -p {ThreadN} -G {GENCODE_HG38_V23} -o

{EXP}.gtf -l {EXP} {EXP}.sorted.bam

4 Auxiliary functions
To facilitate biologists to use BioQueue, we provide auxiliary instructions
that cover the entire process from writing a protocol to creating a job.

Firstly, we have made the protocols in BioQueue transplantable, which
allows users who are using different instances to import suitable protocols
created by others and process the same analysis. As a result, any BioQueue
user can export a protocol with a generated model as a plain text file, and
then upload the protocol to any forum or our open platform
(http://bioqueue.nefu.edu.cn).

Secondly, BioQueue offers an open knowledge base to all biologists.
On BioQueue’s workbench, users can not only search for the usages of
bioinformatics software suitable to their own analysis, but also contribute
to this knowledge base by sharing new usage information, which will be
beneficial to subsequent users. In this manner, the knowledge base will be
vigorously maintained by the community with the most updated software
and protocols.

Thirdly, we have embedded an autocomplete widget to provide
suggestions among pre-defined wildcards and references when users type
parameters in each step.

Lastly, when creating a new job, an auto-detecting widget can remind
the user of the wildcards defined in a selected protocol.

()
Themeanof training data r threshold

f x
ax b r threshold
ì <ï= í + ³ïî

Fig. 1. Benchmark results of BioQueue against other four popular pipelines using a
previously published RNA-seq dataset (E-MTAB-513). Error bars = SD (n=3).

BioQueue

Funding
This	work	has	been	supported	by	 the	National	Nature	Science	Foundation	of	
China	(81472635	and	81672795)	to	GS.	
	
Conflict	of	Interest:	none	declared.

References
Cingolani,P. et al. (2015) BigDataScript: a scripting language for data pipelines.

Bioinformatics, 31, 10–16.
Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting accessible,

reproducible, and transparent computational research in the life sciences.
Genome Biol., 11, R86.

Goodstadt,L. (2010) Ruffus: A lightweight python library for computational
pipelines. Bioinformatics, 26, 2778–2779.

Leipzig,J. (2016) A review of bioinformatic pipeline frameworks. Brief. Bioinform.,
bbw020.

Pertea,M. et al. (2016) Transcript-level expression analysis of RNA-seq experiments
with HISAT, StringTie and Ballgown. Nat. Protoc., 11, 1650–1667.

