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Abstract

Despite accumulating evidence implicating noncoding variants in human
diseases, unraveling their functionality remains a significant challenge. Sys-
tematic annotations of the regulatory landscape and the growth of sequence
variant data sets have fueled the development of tools and methods to iden-
tify causal noncoding variants and evaluate their regulatory effects.Here, we
review the latest advances in the field and discuss potential future research
avenues to gain a more in-depth understanding of noncoding regulatory
variants.
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1. INTRODUCTION

The increasing use of whole-genome sequencing (WGS) in healthcare and research has enabled
the identification of numerous variants in the noncoding regions, thus inspiring in recent years
a growing interest in these noncoding variants and their biological implications. Accumulating
evidence has suggested that functional noncoding variants can be the cause of missing heritability
found in exome sequencing cohorts where large proportions of patients do not receive a molecu-
lar diagnosis (74). Notably, nearly 90% of disease-associated variants identified by genome-wide
association studies (GWASs) lie in the noncoding regions, and they are enriched in transcriptional
regulatory elements (TREs), presumably exerting effects by perturbing gene regulation (81).

Despite the critical role of noncoding variants in human diseases, the interpretation and priori-
tization of noncoding variants have long been hindered by our limited understanding of noncoding
regions. Large consortia such as ENCODE (32) and FANTOM5 (5) and independent research
groups have made tremendous progress in annotating potentially functional elements in this
largely uncharted territory. In this review, we first discuss various annotations of the regulatory
landscape and how these efforts can help decipher the biological impacts of noncoding variants
(Figure 1). We then describe advances in bioinformatic tools to prioritize noncoding variants
by integrating these functional annotations. Finally, we present a series of experimental assays to
evaluate the regulatory potential of candidate variants.

2. ANNOTATIONS OF THE REGULATORY LANDSCAPE

2.1. Enhancer Annotation

While the noncoding genome contains a diversity of TREs, we limit the focus of this review to
enhancers. Enhancers are cis-acting noncoding DNA sequences that activate the expression of
target genes in an orientation-, position-, and distance-independent manner (116). Despite their
importance in physiological and pathological states, the discovery of enhancers, including their
defining properties and functions, remains incomplete.

In a continued effort to identify and functionally characterize TREs, a series of biochemi-
cal features, including chromatin accessibility, posttranslational histone marks, and noncoding
transcriptional patterns, have served as proxies for active enhancers (116).With the advent of high-
throughput sequencing technologies to synthesize and test DNA fragments episomally en masse,
genome-wide elucidation of putative enhancers has been possible. Below,we briefly describe some
of the widely accepted approaches and their advantages and limitations in the genome-wide search
for active enhancers.

2.1.1. Chromatin accessibility. The structure of chromatin, including nucleosome positioning
and spacing, determines the accessibility of DNA sequences to transcription factors (TFs). The
open chromatin state of noncoding regions (i.e., depleted of nucleosomes and therefore acces-
sible) is frequently used to identify potential enhancers (13, 113, 126, 129). To that end, several
approaches, including DNase I or micrococcal nuclease (MNase) coupled with deep sequencing
[DNase-seq (13) and MNase-seq (141), respectively], formaldehyde-assisted isolation of regula-
tory elements sequencing (FAIRE-seq) (41), and assay for transposase-accessible chromatin using
sequencing (ATAC-seq) (16), have been developed to detect accessible regions to discern potential
enhancer loci. Given that not all accessible regions harbor active enhancer elements, additional
features are frequently used to refine such predictions.

2.1.2. Posttranslational histone marks. The biochemical properties of histone proteins in
the flanking nucleosomes of open chromatin regions are frequently used for the identification
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of enhancers (10, 32, 66). Typically, histones that flank active enhancers are marked by histone
H3 acetylation at lysine 27 (H3K27ac) and H3 monomethylated at lysine 4 (H3K4me1) (46).
However, while this epigenomic pattern often correlates with genomic sites containing active en-
hancers,many enhancer loci lack these characteristic marks (128). In fact, the relationship between
posttranslational histone modification and transcription is not entirely resolved.

Moreover, there is no evidence that these biochemical marks are necessary or sufficient for en-
hancer activation. Since no consensus histone modification profile exists to robustly predict active
enhancers, a combinatorial approach is often used to improve enhancer assignments. For example,
amultivariate hiddenMarkovmodel that explicitly considers the presence or absence of each chro-
matin mark using chromatin immunoprecipitation followed by sequencing (ChIP-seq) data sets of
various histone modifications is frequently used to designate putative enhancer loci systematically
(34, 35). Likewise, the ENCODE consortium has systematically integrated DNA accessibility and
histone modification data to create a categorized registry of likely enhancers. Together, these two
approaches offer a step forward in genome-wide curating of putative enhancers.

2.1.3. Sequence and regulator binding profiles. Features such as evolutionary sequence con-
servation and the presence of TF binding and their motifs or certain enhancer-associated proteins
such as the histone acetyltransferase p300 and CREB-binding protein (CBP) have been used to
predict putative enhancer loci (43). However, the presence of apparently nonfunctional or neutral
binding events limits the precise segmentation of the genome. Thus, inferring sequence patterns
and protein binding profiles, which do not accurately capture functionality, cannot be the only
method used to annotate enhancers.

2.1.4. Enhancer activity. In addition to biochemical and sequence features, scientists have
also screened enhancers by directly measuring the enhancer activity of fragmented whole-
genome sequences throughmassively parallel reporter assays (MPRAs) and self-transcribing active
regulatory region sequencing (STARR-seq).

Major differences between MPRAs and STARR-seq arise from construct design, particularly
in the location of the candidate enhancer cloning site, known to have a significant influence on
the sensitivity and specificity of enhancer calls (62). Canonical MPRAs typically clone candidate
enhancers upstream of the reporter gene protomers. Given the known widespread initiation of
transcription at active enhancers, this construction may be confounded by measuring promoter
potential rather than enhancer activity, as a result of spurious initiation occurring at candidate en-
hancers, leading to read-through transcription of reporter transcripts. In addition, most canonical
MPRAs use oligonucleotide-synthesized candidate sequences that consist of <200 bp, limiting
both the size and number of candidate sequences to be tested (92).

STARR-seq-based assays clone elements within 3′ UTR of the reporter transcript such that
sequencing of the element itself allows for the direct measurement of activity without the need for
a barcode. Due to the direct coupling of candidate sequences to enhancer activity, STARR-seq-
based assays can test millions of DNA sequences from arbitrary sources, making genome-wide
identification of enhancers possible (7). However, since the human genome is large and highly
complex, deeper sequencing depth is required to increase both genome-wide coverage of candidate
sequences and accuracy to detect and quantify enhancers. Moreover, there is an observed strand
bias inherent to the assay; the cloning of exogenous sequences within 3′ UTR may inadvertently
lead to strand-specific messenger RNA (mRNA) instability, thus confounding enhancer activity
quantifications (7, 128).

A general limitation of these reporter assays is the testing of elements outside of their en-
dogenous context, in particular for plasmid-based systems that rely on nucleofection of synthetic
constructs into host cells. While the use of chromosomal integration offers some moderation in
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the artificial environment in which elements are tested, integrated reporters still intrinsically lack
the element-specific genomic background of the native locus, making them likely prone to a high
rate of false-positive and false-negative results. This is evident in the substantial discrepancies
observed between integration- and episomal-based assays (52).

2.1.5. Transcription. While the abovementioned approaches are informative, mounting ev-
idence points to enhancer RNAs (eRNAs) as a critical mark for detecting active enhancers
(128). Genome-wide studies have revealed widespread RNA polymerase II–mediated divergent
transcription initiation from enhancer regions (27, 60). While different RNA sequencing (RNA-
seq)-based technologies have been utilized to detect eRNAs, these approaches suffer from low
sensitivity and specificity.

Given the low abundance and short half-lives of eRNAs, nascent RNA-seq offers an optimal
strategy to identify actively transcribed enhancers. In fact, a systematic comparison of various
experimental assays for genome-wide identification of active enhancers indicates that nuclear run-
on with cap selection and sequencing assays (GRO-cap and its variant, PRO-cap) have advantages
in enhancer RNA detection and active enhancer identification (136, 138). Another advantage of
these nuclear run-on-basedmethods, especially PRO-cap, is that they precisely delineate enhancer
boundaries, facilitating a high-resolution mapping of all active enhancers genome-wide (128).

Current efforts are underway to comprehensively annotate enhancers genome-wide across the
human body at base-pair resolution,which will potentiate the study of noncoding variants in many
biological contexts.

2.2. Single-Cell and Spatial Transcriptomics

With the advancement of sequencing technologies, transcriptomic analysis has progressed be-
yond bulk-based samples, enabling researchers to analyze enhancers and noncoding variants at a
much higher resolution. Cutting-edge techniques, such as single-cell sequencing and spatial tran-
scriptomics, allow for the mapping of enhancers and noncoding variants at the single-cell level
or specific locations within tissues. This higher-resolution view provides a more comprehensive
understanding of how noncoding regulatory variants lead to various developmental and disease
phenotypes.

2.2.1. Single-cell transcriptomics. When applied to tissue samples, the bulk-based sequenc-
ing methods described in Section 2.1 might be biased toward specific major cell types within the
sample, and the heterogeneity of different cell types may not be well captured. As enhancer activ-
ities can be highly specific across different cell types and cell states, single cell–based assays have
been developed to identify enhancers in relevant biological contexts.

Traditional poly(T) oligonucleotide-based single-cell RNA-seq methods cannot capture
eRNAs as they are not poly(A)-tailed. Random displacement amplification sequencing (RamDA-
seq) is the first RNA-seq method to sequence all RNA species, including eRNAs, to full length
at the single-cell level using not-so-random primers (44). However, this method is unable to pin-
point the 5′ end of transcripts. To resolve this issue, C1 cap-analysis gene expression (CAGE)
makes use of the C1 cell-sorting system to perform CAGE at a single-cell scale (65). C1 CAGE
can precisely map eRNA transcription start sites, thus enabling enhancer identification at single-
cell resolution. Although RamDA-seq and C1 CAGE can detect enhancers within single cells,
their sensitivity needs further improvement, as most of the signals are detected from coding re-
gions. Given the advantages of PRO-cap assay in eRNA detection that were mentioned in Section
2.1, statistical deconvolution of bulk PRO-cap data and the development of single-cell PRO-cap
assays are ongoing areas of research.
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Multiple studies have employed single-cell RNA-seq to map expression quantitative trait loci
(eQTLs) in various cell types at different developmental stages of peripheral blood mononuclear
cells (PBMCs). Single-cell eQTLs have demonstrated how cell type–specific genetic variation
contributes to autoimmune diseases (139); how genetic variation leads to expression changes in
coexpressed genes (131); and how the same eQTLs may have opposing effects on gene expres-
sion, depending on the cell state (95). Although the application of single-cell eQTLs is limited to
PBMCs due to data availability, the framework is potentially generalizable to other tissue types
in the human body and will be particularly useful when applied to disease tissue samples (e.g.,
tumors) that encompass a heterogeneous population of cells.

2.2.2. Spatial transcriptomics. Despite the ability to dissect cell subpopulations within tissues,
single-cell assays are not able to capture their spatial distribution and intercellular networks. To
address this issue, spatial identification of enhancers across tissues has also been made possible
recently.

Spatially transcriptomic mapping can be based on high-plex imaging or spatial barcoding.
High-plex imaging methods work by encoding individual RNA species through error-robust
barcodes, imprinting the barcodes physically onto RNAs using combinatorial oligonucleotide la-
bels, and measuring each barcode through sequential rounds of imaging (87). A high-plex RNA
imaging–based method, multiplexed error-robust fluorescence in situ hybridization (MERFISH),
can be modified to incorporate spatial profiling of single-cell epigenomic features to map putative
enhancers, and it has been successfully applied to mouse brains (82).

For spatial barcoding, spatially barcoded poly(T) oligonucleotides on a slide can capture
poly(A)-tailed transcripts across tissue cross sections, and RNA expression patterns can be as-
signed to the cross section images after detachment, deep sequencing, and demultiplexing steps
(80). Spatial total RNA-seq (STRS) was recently developed by adding a poly(A) tail to the full
spectrum of RNAs for efficient capture through the poly(T) oligonucleotides on the slide. This
method can potentially be used tomap eRNA transcription spatially across different tissue samples
(85).

Moreover, researchers can also computationally map single-cell transcriptomics and epige-
nomics data on a virtual tissue template and identify spatially differentiated enhancer activity
across the tissues (14). Thus, spatial profiling of enhancers can further help decipher the role
of noncoding regulatory variants during development and pathogenesis of complex diseases.

3. PRIORITIZATION OF NONCODING VARIANTS

3.1. Genome-Wide Association Studies

Over the past decade, GWASs have yielded numerous genotype–phenotype associations and
substantial molecular insights into common traits and complex diseases. To further refine the
identified variants and their functional effects, researchers have developed methods for GWAS
fine-mapping and GWAS-eQTL colocalization analysis. GWAS fine-mapping can help identify
candidate causal variants, while GWAS-eQTL colocalization can provide additional evidence that
the identified variants have the potential to affect gene expression and may serve as regulatory
variants.

3.1.1. Functionally informed fine-mapping. Since GWAS resolution is limited by correla-
tions between nearby variants, it remains a great challenge to pinpoint the actual causal variants at
risk loci. There are often tens to hundreds of variants in high linkage disequilibrium (LD) with the
reported associated single-nucleotide polymorphisms (SNPs) that can be potentially causal (49).
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In a continued effort to prioritize the causal variants, three main fine-mapping strategies have
been developed: heuristic approaches, penalized regression models, and Bayesian methods (110).

A common heuristic approach is to retain SNPs with r2 (a measure of pairwise LD with the
lead SNP) above an arbitrary threshold (42). Despite its ease of use, it overlooks the joint effects
of SNPs on the trait and cannot quantitatively measure the confidence of causality. Penalized
regression models, including lasso (127), elastic net (24), minimax concave penalty (MCP) (15),
and normal exponential γ (NEG) (48), can jointlymodel the simultaneous effects ofmultiple SNPs
and shrink small effect estimates toward zero. However, they tend to result in sparse models that
can reduce the chance of selecting causal variants (110).

Bayesian methods account for the joint effects of SNPs, measure the probability of including
an SNP as causal in any of the models [i.e., posterior inclusion probability (PIP)], and determine
an α credible set by ranking SNPs from largest to smallest PIPs and taking the cumulative sum
of PIPs until it reaches α. Bayesian methods have been demonstrated to perform better than the
other two approaches (23, 130).

To further prioritize candidates for functional validation, an ad hoc review of genomic anno-
tations is often applied to SNPs selected by fine-mapping methods, which can be cumbersome
and biased. An alternative approach is to integrate functional annotations as prior information
for Bayesian methods. For instance, a computationally scalable framework, PolyFun, has signif-
icantly improved fine-mapping accuracy compared to nonfunctionally informed counterparts by
leveraging a broad set of coding, conserved, regulatory, minor allele frequency, and LD-related
annotations genome-wide (133).The regulatory annotations includeDNase-seq andChIP-seq for
various histone marks (H3K27ac, H3K4me1, H3K4me3, and H3K9ac), as well as enhancer and
promoter annotations from large consortia (e.g., FANTOM5 and ENCODE).Given the cell-type
specificity of TREs, another fine-mapping tool, RefMap, has utilized epigenetic profiling (ATAC-
seq; ChIP-seq for H3K27ac,H3K4me1, and H3K4me3) of induced pluripotent stem cell–derived
motor neurons, the key cell type for the pathogenesis of amyotrophic lateral sclerosis (ALS), to
pinpoint causal variants at ALS GWAS risk loci specifically (142).

Well-informed prior probabilities can improve the power and resolution of fine-mapping,
while misspecified prior probabilities can result in misleading results. Thus, getting accurate
functional annotations is critical. As discussed in Section 2.1, functional annotations based on
epigenomic data have their limitations. Incorporating GWAS results with better molecular pro-
filing (e.g., nascent transcription) of disease-relevant cell types and single-cell sequencing readouts
promises to further increase fine-mapping power and shed light on the pathogenesis of complex
diseases.

3.1.2. Colocalizing genome-wide association studies with expression quantitative trait lo-
cus mapping. Since the majority of GWAS hits lie in the noncoding regions, these noncoding
variants are widely assumed to affect gene expression via disruption of regulatory element activity.
A series of colocalization methods have been developed to test whether the overlap between the
GWAS hits and eQTLs is statistically significant (18). For instance, a Bayesianmethod, eCAVIAR,
applied fine-mapping to GWASs and eQTLs independently and estimated the posterior proba-
bility for each variant as the product of probabilities that this variant is causal in the GWAS and
eQTL mapping (50).

However, despite these efforts, only a limited number of GWAS hits colocalize with eQTLs,
raising the concern of missing regulation—the missing link between genetic association and reg-
ulatory function (26). To test the model of noncoding GWAS signals acting as eQTLs, Connally
et al. (26) constructed a positive set of genes that are found in GWAS loci associated with a com-
plex trait and also harbor coding variants known to be causative for a related Mendelian trait or
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the same complex trait. The colocalization of trait and eQTL associations is only found, using
colocalization tools, in 18 out of 220 (8%) genes. They attributed this inconsistency to context
dependency (e.g., cell type, developmental timing, cell state, or environment), nonlinearity (e.g.,
expression below a certain threshold may not manifest phenotype), and the use of the steady-state
expression model (expression can be stochastic and dynamic).

Pritchard and colleagues (90) also looked into the issue of limited overlap of GWAS hits and
eQTLs, and they showed that these two assays are systematically biased toward different types of
variants. eQTLs are clustered around gene transcription start sites, while GWAS hits are usually
farther away from genes and enriched in numerous functional annotations such as enhancers.They
agreed that increasing data in more biological contexts may help bridge the gap.Meanwhile, they
proposed that other types of molecular QTL assays (e.g., chromatin accessibility, DNA methyla-
tion, and chromatin acetylation) and other orthogonal methods such as reporter assays or genome
editing tools may help elucidate the role of gene regulation in complex traits.

Given the small effect size of GWAS variants and the enrichment of SNP heritability in en-
hancers, it may be more informative to measure the impacts on eRNA transcription level instead
of target gene expression level. In addition, colocalization of GWASs and eQTLs is mainly used
to link noncoding variants to their target genes; however, if GWAS hits are indeed located in en-
hancers, there are other computational tools to identify target genes. For instance, the Engreitz
group (94) generated enhancer–gene maps in 131 human cell types and tissues using the activity-
by-contact model, a model based on epigenomic and Hi-C data (39). They utilized these maps
to interpret the molecular and cellular functions of GWAS variants, and demonstrated better
performance compared to other approaches, including colocalization methods.

3.2. Rare-Variant Association Test

A single-variant association test employed by GWAS design to test the effects of rare variants in-
dividually is typically underpowered. Rare-variant association tests are thus developed to measure
their effects in aggregate across shared functional units. Such tests require careful consideration of
several factors, including the selection of qualified variants and the choice of testing unit, statistical
models, and significance threshold (Figure 2).

3.2.1. Selection of qualified variants. Simulation studies performed under realistic scenarios
have found that rare-variant association tests often lack power (12, 29, 69, 124). An important
driver of power is the ratio of causal to noncausal variants in the studied unit. To increase this
ratio, qualified variants are usually chosen based on allele frequency and predicted variant effects.

Filtering based on allele frequency often leverages large-scale human genomic variation
databases such as the Genome Aggregation Database (gnomAD) (56) and the 1000 Genomes
Project (1). Variants with allele frequencies <10−3 or <10−4 are often included for further anal-
yses. In some other cases, researchers have relied on the frequency of alleles present within their
own cohorts. Typically, these cohorts consist of a considerably smaller number of genomically
sequenced samples. Consequently, in such studies, allele frequency cutoffs are often 1% or 5%.

To select qualified variants based on predicted consequences, Combined Annotation-
Dependent Depletion (CADD) (61) is among the most commonly used tools. Other computa-
tional tools have also been developed recently to predict the pathogenicity of noncoding variants,
including deep learning–based sequence analyzer (DeepSEA) (149), delta support vector machine
(deltaSVM) (72), and ExPecto (148). A more detailed overview of these prediction tools appears
in Section 3.3. These tools need to be benchmarked for their performance in selecting qualified
rare variants for association tests.
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Figure 2

Key considerations for rare-variant association tests. (a) Allele frequency and prediction tools are commonly employed to prioritize
potentially relevant variants and increase the signal-to-noise ratio. (b) To better capture signals, appropriate testing units are selected
using sliding-window strategies or functional annotations. (c) Burden tests are particularly effective when rare variants in the testing
unit have consistent effects on the phenotype, while quadratic form test statistics can capture complex relationships between genomic
variants and disease risks in the presence of both deleterious and protective variants. (d) Another important consideration is selecting an
appropriate significance threshold that balances the need to minimize the FWER while maximizing statistical power. Abbreviations:
CADD, Combined Annotation-Dependent Depletion; FWER, family-wise error rate.

3.2.2. Testing units. When testing for rare-variant associations in noncoding regions, selecting
the appropriate testing unit is crucial for achieving high statistical power. Unlike coding variants,
noncoding regions lack natural functional units, making this task particularly challenging.

Currently, twomethods are commonly used.The first is the sliding-window strategy,where the
genome is scanned by fixed-size windows or a fixed number of variants, and the variants within
each window are treated as a group. Several studies used sliding-window strategies to analyze
WGS data or candidate regions (45, 79, 89, 106, 132). The main advantage of this method is
that it does not require prior knowledge of functional annotations and therefore may discover
association signals that uncover new regulatory biology. However, the size of the sliding window
can significantly impact results, making it difficult to choose an optimal size that balances the
trade-off between specificity and sensitivity.

The second method defines testing units based on available functional annotations generated
by large-scale efforts such as ENCODE. For example, Cochran et al. (25) used a gene-centric
approach to WGS data by grouping together coding variants in each gene and noncoding vari-
ants in their associated TREs. Werling et al. (134) integrated genomic annotations at the level of
nucleotides, genes, and TREs and defined 51,801 annotation categories to perform rare-variant
association tests. The main advantage of this method is that it provides a more biologically mean-
ingful testing unit and thus can improve the statistical power. However, it may miss signals of
association if the underlying biology is not well understood.

3.2.3. Statistical approaches. Statistical approaches used for rare-variant association tests in-
clude burden tests and quadratic form tests. For burden tests, some approaches calculate the sum
of effects of all qualified variants in the region of interest and contrast the cases versus controls
(100, 134),while some others obtain null distributions by permuting phenotypes and then calculate
p-values based on the observed data (45).
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Burden tests are powerful when the rare variants in the testing unit exert effects in the same
direction (either deleterious or protective), but they have lower statistical power when a mix
of deleterious and protective variants is present (12). By contrast, a quadratic form test statistic
combines the effects of individual variants and thus can capture complex relationships between
genomic variants and disease risks (45, 96, 137). When attempting to determine the effects of
individual variants, one common method is to treat every qualified variant as equal. However,
more sophisticated methods assign weights to each variant based on various factors such as its
pathogenicity score or functional annotations of the genome (59, 78, 89).

3.2.4. Significance threshold. It is important to appropriately determine the significance
threshold when interpreting the results of rare-variant association tests. A common approach
for accounting for multiple comparisons is to use the Bonferroni correction, which has been
widely used by researchers (89, 109). This method is straightforward and applicable to a wide
range of studies. If the tests are independent, the Bonferroni correction can effectively control the
family-wise error rate (FWER).

However, the assumption of independence can be violated in many cases. For instance, when
using sliding windows, there are typically overlaps between adjacent windows.Moreover, variants
may be in LD, and thus the corresponding test statistics can be correlated. Additionally, func-
tional prediction scores of the same variant in different tissues may also be dependent.While using
Bonferroni correction can provide an upper bound for the FWER, it may not be themost powerful
method in such cases. Therefore, researchers have proposed alternative methods to optimize the
significance threshold for improving statistical power while controlling the FWER. These meth-
ods typically combine (a) a closed form of significance thresholds and (b) parameter estimation by
resampling algorithms to determine an appropriate significance threshold (45, 79).

3.3. Machine Learning

Computational scores such as CADD have long been used to evaluate the potential impact of
genetic variants. These scores can aid in estimating prior probabilities for Bayesian fine-mapping
or selecting qualified variants for rare-variant association tests. Additionally, they can be used on
their own to assess the deleteriousness and molecular impact of variants. In the following section,
we will explain the methodology used to calculate these in silico scores.

3.3.1. Direct prediction of variant consequences. In addition to the statistical methods
described in the above sections, machine learning methods have also been used to infer the phe-
notypic effects of noncoding variants (19, 51, 53, 61, 72, 75, 91, 105, 107, 120) (Figure 3). These
tools work by finding the hyperplanes that partition the benign and deleterious variants based on
a combination of feature values. The invention of these tools can be decomposed into three pro-
cesses: feature engineering, reference compiling, and model training. Here, we focus on feature
engineering and reference compiling. (For a detailed overview of model training methods, see
Reference 11.)

3.3.1.1. Feature engineering. In the feature-engineering process, researchers select feature val-
ues that have the potential to distinguish two classes of variants and apply necessary numerical
transformations to increase the robustness of predictions.

Evolutionary conservation-based features give satisfying performances when used to evaluate
the deleterious effects of coding variants (2, 119); naturally, they also play essential roles in almost
all noncoding variant dissection tools (19, 51, 53, 61, 72, 75, 91, 105, 107, 120). The most com-
monly used conservation scores include PhastCons (118), phyloP (101), and genomic evolutionary
rate profiling (GERP)++ (28). The maturation of high-throughput sequencing techniques
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Figure 3

Strategies of machine learning methods to predict the pathogenicity of noncoding variants. Two strategies are commonly used to infer
the phenotypic effects of noncoding variants using machine learning methods. (a) The first strategy involves training models to find the
separating hyperplanes between benign and deleterious variants based on a combination of feature values. (b) The second strategy
typically involves a two-step process, starting with training a deep learning model to predict molecular phenotypes from sequences and
then clustering the molecular phenotypes. Changes in cluster labels can then be used to evaluate the functional outcomes induced by in
silico mutagenesis.

enabled the rapid accumulation of sequencing data, which led to the creation of comprehensive
catalogs of recent and ongoing natural selection, as reflected in the 1000 Genomes Project and
gnomAD databases. Tools such as regulatory Mendelian mutation (ReMM)-Genomiser (120)
and NCBoost (19) leveraged allele frequencies from these sources to model the corresponding
variants. Meanwhile, with these large-scale sequencing libraries, new conservation metrics
tailored for noncoding regions, such as the context-dependent tolerance score (CDTS) (30), are
also introduced. Variant classification tools, such as CADD (105), NCBoost (19), and Functional
Identification of Noncoding Sequences Using Random Forests (FINSURF) (91), included this
new metric as part of their conservation feature set.

Distal TREs are known to have higher evolutionary turnover (111), so in addition to conser-
vation scores, epigenomic signals have frequently been included in the feature set (61, 107). For
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instance, Genome-Wide Annotation of Variants (GWAVA) (107), a pioneer tool for noncoding
variant classification, incorporated information on chromatin accessibility, the binding status of
124 TFs, and 12 histone-modification statuses. More recently, comprehensive catalogs of tran-
scribed enhancers are becoming more accessible (5, 138). Several tools have leveraged enhancer
annotations from such sources and reported performance gains (19, 51, 120).

Additionally, features that recapitulate the sequence context of variants are commonly included,
such asGC content (19, 61, 115, 120),CpGdensity (19, 61, 107, 120), and relative position to genes
(19).

3.3.1.2. Compiling references. Compiling references is another important step for training
supervised models. Most of the aforementioned tools use annotated damaging mutations from
public databases, such as the Human Gene Mutation Database (HGMD) (121), or in-house cu-
rated pathogenic noncoding variants associated with specific diseases (19, 115, 120) as the positive
set (i.e., the deleterious variants).

In order to build the negative sets (i.e., the benign variants), different studies have employed
different strategies. For instance, FINSURF used ClinVar (71) variants that do not have known
medical impacts (91). CADD (61, 105) and ReMM-Genomiser (120) used noncoding nucleotides
that have diverged in humans compared with the inferred ancestral primate genome sequence.
Common variants identified by the 1000 Genomes Project or dbSNP (114) variants that do not
have clinical assertions are also widely used (19, 107, 115, 120).

One challenge raised by this practice is that the negative set is much larger than the positive
set (studies can have up to 32,572-fold more negatives). If unaddressed, the heavily imbalanced
training set will significantly bias the model. One work-around for this problem is to downsample
or partition the negative set to form multiple balanced training sets and then train reassembled
models (19, 91, 107, 115, 120). The other work-around is to enlarge the training set. For instance,
CADD simulated equal numbers of de novo variants free of selective pressure (105). However,
a considerable fraction of these simulated variants can still be neutral. An alternative way to
circumvent these challenges is to characterize variants using unsupervised learning methods (53).

3.3.2. Prediction of molecular phenotypes. Aside from directly predicting deleterious vari-
ants, researchers have also devised methods that predict them in a two-step manner: They first
determine if the variant introduces any molecular phenotypic changes and then predict the
deleterious variants that lead to changes at the molecular level.

Traditional machine learning methods, such as the gapped k-mer support vector machine
(gkm-SVM) (72), contributed insights on this route. Furthermore, a lot of effort has been fo-
cused on leveraging the power of deep learningmethods, especially convolutional neural networks
(CNNs), to extract flexible DNA syntax and predict epigenomic signals such as chromatin hi-
stone modification (57, 144, 149), TF binding (4, 9, 144, 149), chromatin accessibility (57, 58,
93), transcription expression (3, 57, 148), and chromatin interaction (38, 147). In addition to the
CNN architecture, tools based on graph convolutional networks and transformer architectures
are emerging with promising performances (8, 70, 73, 143).

After learning the syntax between DNA sequences and epigenomic signals, researchers can
introduce mutations to the input DNA sequences via a process called in silico mutagenesis and
then compare the differences in epigenomic predictions between the wild-type and mutated in-
puts. Tools such as DeepSEA feed the differences in epigenomic signals into a logistic regression
model to discriminate between deleterious and benign variants. The changes in predictions can
be used directly for variant prioritization as well. For example, ExPecto (148) and Xpresso (3) pre-
dict transcript expression levels, and variants that lead to substantial predicted expression changes
largely overlap with causal SNPs identified from GWASs. Dimension reduction and clustering
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techniques were also used to investigate the potential molecular effects of variants. In this case,
the input sequences are first converted to numerical representations (referred to as embeddings) by
using the trained deep learning models, and then dimension reduction and clustering are applied
to these embeddings to see if specific variants affect the cluster membership of the corresponding
sequences (21).

4. FUNCTIONAL CHARACTERIZATION OF NONCODING
REGULATORY VARIANTS

While the application of the methods discussed above has led to the identification of countless
noncoding regulatory variants implicated in numerous human traits and diseases, functional char-
acterization of the mechanisms by which these variants confer regulatory impact to associated
phenotypes remains a central challenge. Extraordinary complexity arises from noncoding variants
exerting regulatory influence in a cell type– and cell state–dependent manner—biological con-
texts that are typically challenging to recapitulate in controlled experimental conditions. Thus,
important consideration for intrinsically relevant physiological variables should be taken when
designing rigorous functional studies.

Experimental approaches used to derive biological insight for noncoding regulatory variants
are categorized into three major classes: protein binding assays, reporter assays, and genome edit-
ing (reviewed in greater detail in Reference 103). Here, we summarize general use cases and
highlight key considerations for designing informative functional studies.

4.1. Protein Binding Assays

Transcriptional enhancers modulate the spatiotemporal expression of target genes via dynamic
DNA-binding patterns of regulatory TFs (116). Models hypothesize that noncoding variants in-
fluence transcriptional regulation via disruption and/or stabilization of protein binding by altering
TF binding motifs within phenotypically relevant TREs (116). Numerous methods developed to
interrogate DNA–protein interactions have been applied to examine alterations in TF binding
dynamics mediated by noncoding regulatory variants.

Protein binding assays such as electrophoretic mobility shift assays (EMSAs), ChIP–
quantitative polymerase chain reaction (qPCR), and ChIP-seq (54, 98) can provide qualitative
and/or quantitative assessment of differential TF binding patterns induced by noncoding regula-
tory variants (103). Protein binding assays, however, are often limited in that they are performed
in vitro and outside of their endogenous genomic context and thus are burdened by high rates of
false-positive and false-negative results. While ChIP-qPCR and ChIP-seq are performed closer
to the native state due to in vivo DNA–protein cross-linking, they typically require a priori
knowledge of TF binding partners in order to directly assess functional impacts.

High-throughput protein binding assays offer considerable advantages. Such methods include
those that utilize direct affinity measurements [e.g., microfluidic (83), surface plasmon resonance
(17, 99, 117), and microarrays such as ChIP-chip (67) and DNA immunoprecipitation with mi-
croarray detection (DIP-chip) (77)], in vitro selection [e.g., high-throughput systematic evolution
of ligands by exponential enrichment (SELEX) (108)], bacterial one-hybrid systems (86), and unbi-
ased high-throughput screens [e.g., SNP sequencing (SNP-seq) (76)], which have previously been
reviewed in great detail (103, 122).The evaluation of protein binding on a large scale has made the
screening of the protein binding effects of thousands of candidate noncoding regulatory variants
possible, offering a powerful means for the prioritization of potentially consequential variants.
However, large-scale screens typically fall short of providing detailed information into the molec-
ular mechanisms and relevant cellular pathways in which noncoding regulatory variants function
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and thus require further follow-up studies to recapitulate and explore initial findings. Neverthe-
less, as protein binding assays allow for the determination of specific TF binding alterations as
well as the assessment of global TF binding patterns, these methods provide powerful screening
potential, leading to the prioritization of candidate noncoding regulatory variants, especially when
performed using relevant cell types and under relevant cell states.

4.2. Reporter Assays

Orthogonal to assessing a variant’s impact on TF binding is directly measuring its influence
on transcriptional activity. In ectopic-based reporter assays, TREs are cloned into heterologous
reporter constructs such that when introduced into a cellular host system, they modulate the ex-
pression of a reporter gene.Genomic integration–based reporter assays follow the same principle;
however, they are assessed within a genomic context introduced via either random or site-directed
integration into a host-cell genome.Both ectopic- and integration-based assays can differ in exper-
imental read-out to obtain activity measurements. Imaging-based readouts quantify activity using
the enzymatic (e.g., luciferase and β-galactosidase) or fluorescent [e.g., green fluorescent protein
(GFP)] activity of protein products, though they can be confounded by variables acting at the
level of posttranscription and/or translation. As an alternative, reporter RNA transcript readouts
using reverse transcriptase qPCR (RT-qPCR) can circumvent many of these potential limitations,
assuming fixed reporter RNA stability.

In addition to applications in enhancer screening, as described in Section 2.1.4, MPRAs and
STARR-seq assays are also frequently used to test the regulatory effects of noncoding variants
(125). Testing in nonnative contexts as well as limitations in our understanding of fundamental
architectural and logical properties of enhancer elements, such as element unit boundaries and
enhancer–promoter compatibility rules, may, in part, explain the observed inconsistency common
to reporter assays (52). Moreover, reporter assays may lack the dynamic range to detect the small
effect sizes of variant impacts as well as the ability to detect additive and/or multiplicative effects
of multiple variants acting in concert on regulation.Developing improved reporter constructs and
analytical pipelines that reduce experimental bias in addition to testing with diverse representative
sets of promoters and cell types under relevant cell states may partially address some of these
limitations. Furthermore, we anticipate that the recently developed single-cell STARR-seq (84)
and single-cell MPRA (146) will be widely used to evaluate candidate variants for cell type– and
cell state–specific cis-regulatory effects, particularly in native tissue contexts.

4.3. Genome Editing

The major limitation of both protein binding and reporter assays is the testing of variants
outside of their native genomic context, resulting in high rates of false positives and false
negatives. Genome editing methods are thus promising given their ability to investigate the func-
tions of noncoding regulatory variants within their native locus under endogenous physiological
conditions.

Genome editing has diverse applications due to the development of a host of different strate-
gies, allowing for the evaluation of variants under native biological contexts, including via the use
of in vitro primary cell culture or in vivo animal models.This makes investigating variant influence
on regulatory activity and characterization of target genes and relevant molecular pathways feasi-
ble, which are essential steps for determining the impact on associated phenotypes (40). Broadly,
genome editing technologies rely on programmable sequence-specific nucleases (SSNs) to in-
duce targeted DNA breaks (31). Early genome editing methods, including meganucleases (33),
zinc-finger nucleases (ZFNs) (20), and transcription activator-like effector nucleases (TALENs)
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(55), required the design of sequence-specific DNA-binding protein domains, making them ex-
ceptionally difficult to produce.However, the discovery and subsequent rapid improvement of the
low-cost and easy-to-use CRISPR-Cas9 system have made earlier methods less favorable. Instead
of relying on protein engineering, CRISPR-Cas9 utilizes the Cas9 nuclease, which is directed by a
programmable guide RNA to a specific location in the genome where it can then cut the DNA and
induce the desired change. The mechanisms that underlie genome editing have been previously
reviewed (140).

CRISPR-Cas9 has been used to introduce small insertions and deletions (indels) at or near
variants of interest as well as to induce larger genomic deletions including or surrounding variants
to disrupt regulatory activity (64). Inactivation of the Cas9 nuclease resulting in complete loss of
DNA cleavage activity [dead Cas9 (dCas9)] and fusion of dCas9 enzymes to effector domains en-
able efficient transcriptional regulation, including CRISPR-mediated inhibition (CRISPRi) and
activation (CRISPRa) (102). CRISPRi and CRISPRa have allowed for the dynamic spatiotem-
poral control of gene expression and have been applied to study noncoding regulatory variants
via epigenetic control of the local regulatory region (102). Additionally, dCas enzymes can be
fused with other enzymatic domains, such as the base modification enzymes cytidine deaminase,
to create cytosine base editors that can convert C • G to T• A base pairs, and adenine deaminase,
to create adenine base editors that convert A •T to G • C base pairs. Recently, glycosylase base
editors, capable of inducing C • G to G • C and C • G to A •T transitions (68, 145), have been de-
veloped. Base editing can generate precise point mutations in the genome and is a powerful tool
for studying noncoding regulatory variants, allowing for allelic substitution of variants of interest
in functional studies. Base editors and their applications have been reviewed extensively (47, 88,
104).

Although base editing can be used to perform the four transition mutations and some transver-
sion mutations, it is limited in performing all eight transversions and inducing small indels. Prime
editors are composed of aMoloneymurine leukemia virus (M-MLV) reverse transcriptase fused to
an RNA-programmable nickase (nCas9), and a prime editing guide RNA guides the prime editor
to the target site, whereby it can perform all 12 possible conversions, and small indels into target
DNA sites (6). Prime editors also offer advantages in their ability to induce base substitutions in
more regions with fewer bystander mutations at the targeted locus (6).However, the experimental
design of prime editors is much more complex than other CRISPR methods.

Despite its immense potential, genome editing still suffers from technical difficulties. An
increase in efficiency, specificity, and targetability in genome editing technologies remains a chal-
lenge that will need to be overcome before its full potential can be realized. In addition, the
identification and further development of recently described CRISPR-targeted transposases and
recombinases represent an exciting area of research in genome editing that may enable more pre-
cise targeting of loci (22, 63, 123). Therefore, we speculate that genome editing will accelerate the
translation of genomic information to therapeutic strategies.

4.4. Other Considerations

As the precise characterization of variant function relies on robust experimental design, important
considerations should be taken when designing and executing functional experiments in order to
gain mechanistic insights. Given the highly specific cell type– and cell state–dependent nature of
gene regulation, particularly as it relates to enhancer function (97, 112), noncoding regulatory
variants are likely to influence target gene expression and the associated phenotype only under
highly specific conditions. Thus, recapitulating the parameters that influence variant function,
including cell type, environmental conditions, and transient perturbations, must be considered, as
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variants may only show a phenotypic response to such settings. Integration of tissue-specific gene
expression and genomic annotations of candidate regulatory variants, in particular at single-cell
resolution, can allow for the prioritization of associated loci in specific cell types and states.

Despite the immense utility of experiments performed in human immortalized cell linemodels,
the demonstration of a variant’s impact on an altered phenotype following allelic substitution, ei-
ther in vitro in primary cell culture or in vivo in animalmodels, is favorable to precisely evaluate the
function of noncoding regulatory variants. The use of patient-derived primary cells is a powerful
system given that they mimic the exact genomic and cellular background naturally observed in the
patient. However, although genome editing can be performed in cell line models, it is particularly
challenging to perform in primary cells given their difficulty to culture. As an alternative, human
induced pluripotent stem cells (hiPSCs), which can be differentiated into diverse cell types (135),
are an elegant system to study the molecular mechanisms of genetic variants, especially during
cell transition states that may be consequential to various phenotypes such as developmental con-
ditions. Additionally, despite differences in their genome architecture, mammalian animal models
are also attractive systems due to their anatomical and physiological conservation with humans.
However, as specific phenotypes may not be recapitulated in model organisms, patient-derived
xenografts can allow for the study of human cells in an animal setting, although they may still lack
the ability to recapitulate the physiology of native tissues.

5. CONCLUSION

The ever-growing computational toolbox (GWAS, rare-variant association tests, and machine
learning) with the integration of large-scale data sets of functional annotations has enabled the
prioritization of noncoding variants in relevant cell types and tissues. Scalable functional assays
have significantly furthered our understanding of how noncoding regulatory variants may influ-
ence associated phenotypes. The insights gained from these studies have immense potential to
drive translational advances that may enable more effective disease prevention and treatment,
such as gene therapy strategies (36, 37).
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7. Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A. 2013. Genome-wide quantitative
enhancer activity maps identified by STARR-seq. Science 339(6123):1074–77

8. Avsec Ž, Agarwal V,Visentin D,Ledsam JR,Grabska-Barwinska A, et al. 2021. Effective gene expression
prediction from sequence by integrating long-range interactions.Nat. Methods 18(10):1196–203

9. Avsec Ž, Weilert M, Shrikumar A, Krueger S, Alexandari A, et al. 2021. Base-resolution models of
transcription-factor binding reveal soft motif syntax.Nat. Genet. 53(3):354–66

10. Bell O,Tiwari VK,ThomäNH,SchübelerD. 2011.Determinants and dynamics of genome accessibility.
Nat. Rev. Genet. 12(8):554–64

11. Bishop CM. 2006. Pattern Recognition and Machine Learning. New York: Springer
12. Bocher O, Génin E. 2020. Rare variant association testing in the non-coding genome. Hum. Genet.

139(11):1345–62
13. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, et al. 2008. High-resolution mapping and

characterization of open chromatin across the genome. Cell 132(2):311–22
14. Bravo González-Blas C, Quan X-J, Duran-Romaña R, Taskiran II, Koldere D, et al. 2020. Identification

of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics.Mol.
Syst. Biol. 16(5):e9438

15. Breheny P, Huang J. 2009. Penalized methods for bi-level variable selection. Stat. Interface 2(3):369–80
16. Buenrostro JD,Giresi PG,Zaba LC,ChangHY,GreenleafWJ. 2013.Transposition of native chromatin

for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome
position.Nat. Methods 10(12):1213–18

17. Campbell CT, Kim G. 2007. SPR microscopy and its applications to high-throughput analyses of
biomolecular binding events and their kinetics. Biomaterials 28(15):2380–92

18. Cano-Gamez E, Trynka G. 2020. From GWAS to function: using functional genomics to identify the
mechanisms underlying complex diseases. Front. Genet. 11:424

19. Caron B, Luo Y, Rausell A. 2019. NCBoost classifies pathogenic non-coding variants in Mendelian
diseases through supervised learning on purifying selection signals in humans.Genome Biol. 20(1):32

20. Carroll D. 2011. Genome engineering with zinc-finger nucleases.Genetics 188(4):773–82
21. Chen KM, Wong AK, Troyanskaya OG, Zhou J. 2022. A sequence-based global map of regulatory

activity for deciphering human genetics.Nat. Genet. 54(7):940–49
22. Chen SP,Wang HH. 2019. An engineered Cas-Transposon system for programmable and site-directed

DNA transpositions. CRISPR J. 2(6):376–94
23. Chen W, Larrabee BR, Ovsyannikova IG, Kennedy RB, Haralambieva IH, et al. 2015. Fine mapping

causal variants with an approximate Bayesian method using marginal test statistics.Genetics 200(3):719–
36

24. Cho S, Kim H, Oh S, Kim K, Park T. 2009. Elastic-net regularization approaches for genome-wide
association studies of rheumatoid arthritis. BMC Proc. 3(Suppl. 7):S25

25. Cochran JN, Geier EG, Bonham LW, Newberry JS, Amaral MD, et al. 2020. Non-coding and loss-of-
function coding variants in TET2 are associated with multiple neurodegenerative diseases.Am. J. Hum.
Genet. 106(5):632–45

26. Connally NJ, Nazeen S, Lee D, Shi H, Stamatoyannopoulos J, et al. 2022. The missing link between
genetic association and regulatory function. eLife 11:e74970

27. Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. 2014. Analysis of nascent RNA iden-
tifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat. Genet.
46(12):1311–20

28. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. 2010. Identifying a high
fraction of the human genome to be under selective constraint using GERP++. PLOS Comput. Biol.
6(12):e1001025

29. Derkach A, Lawless JF, Sun L. 2014. Pooled association tests for rare genetic variants: a review and some
new results. Stat. Sci. 29(2):302–21

30. di Iulio J, Bartha I, Wong EHM, Yu H-C, Lavrenko V, et al. 2018. The human noncoding genome
defined by genetic diversity.Nat. Genet. 50(3):333–37

www.annualreviews.org • Finding Noncoding Regulatory Variants 217

A
nn

u.
 R

ev
. G

en
et

. 2
02

3.
57

:2
01

-2
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g



GE57CH08_Yu ARjats.cls November 4, 2023 14:8

31. Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with
CRISPR-Cas9. Science 346(6213):1258096

32. ENCODE Proj. Consort. 2012. An integrated encyclopedia of DNA elements in the human genome.
Nature 489(7414):57–74

33. Epinat J-C, Arnould S, Chames P, Rochaix P, Desfontaines D, et al. 2003. A novel engineered
meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res.
31(11):2952–62

34. Ernst J, Kellis M. 2012. ChromHMM: automating chromatin-state discovery and characterization.Nat.
Methods 9(3):215–16

35. Ernst J, Kellis M. 2017. Chromatin-state discovery and genome annotation with ChromHMM. Nat.
Protoc. 12(12):2478–92

36. Esrick EB,LehmannLE,Biffi A,AchebeM,Brendel C, et al. 2021.Post-transcriptional genetic silencing
of BCL11A to treat sickle cell disease.N. Engl. J. Med. 384(3):205–15

37. Frangoul H, Altshuler D, Cappellini MD, Chen Y-S, Domm J, et al. 2021. CRISPR-Cas9 gene editing
for sickle cell disease and β-thalassemia.N. Engl. J. Med. 384(3):252–60

38. Fudenberg G, Kelley DR, Pollard KS. 2020. Predicting 3D genome folding from DNA sequence with
Akita.Nat. Methods 17(11):1111–17

39. Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, et al. 2019. Activity-by-contact model of
enhancer-promoter regulation from thousands of CRISPR perturbations.Nat. Genet. 51(12):1664–69

40. GallagherMD,Chen-Plotkin AS. 2018.The post-GWAS era: from association to function.Am. J.Hum.
Genet. 102(5):717–30

41. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. 2007. FAIRE (Formaldehyde-Assisted Isola-
tion of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res.
17(6):877–85

42. Gong J, Mei S, Liu C, Xiang Y, Ye Y, et al. 2018. PancanQTL: systematic identification of cis-eQTLs
and trans-eQTLs in 33 cancer types.Nucleic Acids Res. 46(D1):D971–76

43. Hardison RC, Taylor J. 2012. Genomic approaches towards finding cis-regulatory modules in animals.
Nat. Rev. Genet. 13(7):469–83

44. Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I. 2018. Single-cell full-length total
RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.Nat. Commun. 9(1):619

45. He Z,Xu B, Buxbaum J, Ionita-Laza I. 2019. A genome-wide scan statistic framework for whole-genome
sequence data analysis.Nat. Commun. 10(1):3018

46. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, et al. 2007. Distinct and predictive chromatin
signatures of transcriptional promoters and enhancers in the human genome.Nat. Genet. 39(3):311–18

47. HessGT,Tycko J,YaoD,BassikMC.2017.Methods and applications of CRISPR-mediated base editing
in eukaryotic genomes.Mol. Cell 68(1):26–43

48. Hoggart CJ,Whittaker JC,De IorioM,Balding DJ. 2008. Simultaneous analysis of all SNPs in genome-
wide and re-sequencing association studies. PLOS Genet. 4(7):e1000130

49. Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E. 2014. Identifying causal variants at loci with
multiple signals of association.Genetics 198(2):497–508

50. Hormozdiari F, van de Bunt M, Segrè AV, Li X, Joo JWJ, et al. 2016. Colocalization of GWAS and
eQTL signals detects target genes. Am. J. Hum. Genet. 99(6):1245–60

51. Huang Y-F, Gulko B, Siepel A. 2017. Fast, scalable prediction of deleterious noncoding variants from
functional and population genomic data.Nat. Genet. 49(4):618–24

52. Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, et al. 2017. A systematic comparison re-
veals substantial differences in chromosomal versus episomal encoding of enhancer activity.Genome Res.
27(1):38–52

53. Ionita-Laza I, McCallum K, Xu B, Buxbaum JD. 2016. A spectral approach integrating functional
genomic annotations for coding and noncoding variants.Nat. Genet. 48(2):214–20

54. Johnson DS, Mortazavi A, Myers RM,Wold B. 2007. Genome-wide mapping of in vivo protein-DNA
interactions. Science 316(5830):1497–502

55. Joung JK, Sander JD. 2013. TALENs: a widely applicable technology for targeted genome editing.Nat.
Rev. Mol. Cell Biol. 14(1):49–55

218 Chen et al.

A
nn

u.
 R

ev
. G

en
et

. 2
02

3.
57

:2
01

-2
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g



GE57CH08_Yu ARjats.cls November 4, 2023 14:8

56. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, et al. 2020. The mutational constraint
spectrum quantified from variation in 141,456 humans.Nature 581(7809):434–43

57. Kelley DR, Reshef YA, Bileschi M, Belanger D, McLean CY, Snoek J. 2018. Sequential regulatory
activity prediction across chromosomes with convolutional neural networks.Genome Res. 28(5):739–50

58. Kelley DR, Snoek J, Rinn JL. 2016. Basset: learning the regulatory code of the accessible genome with
deep convolutional neural networks.Genome Res. 26(7):990–99

59. Kim T, Wei P. 2016. Incorporating ENCODE information into association analysis of whole genome
sequencing data. BMC Proc. 10(Suppl. 7):9

60. KimT-K,HembergM,Gray JM,Costa AM,BearDM, et al. 2010.Widespread transcription at neuronal
activity-regulated enhancers.Nature 465(7295):182–87

61. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. 2014. A general framework for
estimating the relative pathogenicity of human genetic variants.Nat. Genet. 46(3):310–15

62. Klein JC, Agarwal V, Inoue F, Keith A, Martin B, et al. 2020. A systematic evaluation of the design and
context dependencies of massively parallel reporter assays.Nat. Methods 17(11):1083–91

63. Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH. 2019. Transposon-encoded CRISPR–Cas
systems direct RNA-guided DNA integration.Nature 571(7764):219–25

64. Komor AC, Badran AH, Liu DR. 2017. CRISPR-based technologies for the manipulation of eukaryotic
genomes. Cell 168(1–2):20–36

65. Kouno T,Moody J, Kwon AT-J, Shibayama Y, Kato S, et al. 2019. C1 CAGE detects transcription start
sites and enhancer activity at single-cell resolution.Nat. Commun. 10(1):360

66. Kouzarides T. 2007. Chromatin modifications and their function. Cell 128(4):693–705
67. Kurdistani SK, Grunstein M. 2003. In vivo protein–protein and protein–DNA crosslinking for

genomewide binding microarray.Methods 31(1):90–95
68. Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, et al. 2021. CRISPR C-to-G base editors for inducing

targeted DNA transversions in human cells.Nat. Biotechnol. 39(1):41–46
69. Ladouceur M, Dastani Z, Aulchenko YS, Greenwood CMT, Richards JB. 2012. The empirical power

of rare variant association methods: results from Sanger sequencing in 1,998 individuals. PLOS Genet.
8(2):e1002496

70. Lanchantin J, Qi Y. 2020. Graph convolutional networks for epigenetic state prediction using both
sequence and 3D genome data. Bioinformatics 36(Suppl. 2):i659–67

71. LandrumMJ, Chitipiralla S, Brown GR,Chen C,Gu B, et al. 2020. ClinVar: improvements to accessing
data.Nucleic Acids Res. 48(D1):D835–44

72. Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, et al. 2015. A method to predict the impact of
regulatory variants from DNA sequence.Nat. Genet. 47(8):955–61

73. Lee D, Yang J, Kim S. 2022. Learning the histone codes with large genomic windows and
three-dimensional chromatin interactions using transformer.Nat. Commun. 13(1):6678

74. Lee H,Deignan JL,Dorrani N, Strom SP,Kantarci S, et al. 2014. Clinical exome sequencing for genetic
identification of rare Mendelian disorders. JAMA 312(18):1880–87

75. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, et al. 2016. Analysis of protein-coding
genetic variation in 60,706 humans.Nature 536(7616):285–91

76. Li G,Martínez-BonetM,WuD,Yang Y,Cui J, et al. 2018.High-throughput identification of noncoding
functional SNPs via type IIS enzyme restriction.Nat. Genet. 50(8):1180–88

77. Liu X, Noll DM, Lieb JD, Clarke ND. 2005. DIP-chip: rapid and accurate determination of DNA-
binding specificity.Genome Res. 15(3):421–27

78. Liu Y, Liang Y, Cicek AE, Li Z, Li J, et al. 2018. A statistical framework for mapping risk genes from de
novo mutations in whole-genome-sequencing studies. Am. J. Hum. Genet. 102(6):1031–47

79. Li Z, Li X, Liu Y, Shen J, Chen H, et al. 2019. Dynamic scan procedure for detecting rare-variant
association regions in whole-genome sequencing studies. Am. J. Hum. Genet. 104(5):802–14

80. Longo SK, Guo MG, Ji AL, Khavari PA. 2021. Integrating single-cell and spatial transcriptomics to
elucidate intercellular tissue dynamics.Nat. Rev. Genet. 22(10):627–44

81. Loos RJF.2020. 15 years of genome-wide association studies and no signs of slowing down.Nat.Commun.
11(1):5900

www.annualreviews.org • Finding Noncoding Regulatory Variants 219

A
nn

u.
 R

ev
. G

en
et

. 2
02

3.
57

:2
01

-2
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g



GE57CH08_Yu ARjats.cls November 4, 2023 14:8

82. LuT,AngCE,ZhuangX. 2022. Spatially resolved epigenomic profiling of single cells in complex tissues.
Cell 185(23):4448–64.e17

83. Maerkl SJ, Quake SR. 2007. A systems approach to measuring the binding energy landscapes of
transcription factors. Science 315(5809):233–37

84. Mangan RJ, Alsina FC, Mosti F, Sotelo-Fonseca JE, Snellings DA, et al. 2022. Adaptive sequence
divergence forged new neurodevelopmental enhancers in humans. Cell 185(24):4587–603.e23

85. McKellar DW,Mantri M,HinchmanMM,Parker JSL, Sethupathy P, et al. 2022. Spatial mapping of the
total transcriptome by in situ polyadenylation. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-
01517-6

86. Meng X, Brodsky MH, Wolfe SA. 2005. A bacterial one-hybrid system for determining the
DNA-binding specificity of transcription factors.Nat. Biotechnol. 23(8):988–94

87. Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X. 2016. High-throughput single-
cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. PNAS
113(39):11046–51

88. Molla KA, Yang Y. 2019. CRISPR/Cas-mediated base editing: technical considerations and practical
applications. Trends Biotechnol. 37(10):1121–42

89. Morrison AC, Huang Z, Yu B, Metcalf G, Liu X, et al. 2017. Practical approaches for whole-genome
sequence analysis of heart- and blood-related traits. Am. J. Hum. Genet. 100(2):205–15

90. Mostafavi H, Spence JP, Naqvi S, Pritchard JK. 2022. Limited overlap of eQTLs and GWAS
hits due to systematic differences in discovery. bioRxiv 2022.05.07.491045. https://doi.org/10.1101/
2022.05.07.491045

91. Moyon L, Berthelot C, Louis A, Nguyen NTT, Roest Crollius H. 2022. Classification of non-coding
variants with high pathogenic impact. PLOS Genet. 18(4):e1010191
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